These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23676991)

  • 1. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films.
    Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL
    Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state dendrimer sensors: probing the diffusion of an explosive analogue using neutron reflectometry.
    Cavaye H; Smith AR; James M; Nelson A; Burn PL; Gentle IR; Lo SC; Meredith P
    Langmuir; 2009 Nov; 25(21):12800-5. PubMed ID: 19610640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient sensing of explosives by using fluorescent nonporous films of oligophenyleneethynylene derivatives thanks to optimal structure orientation and exciton migration.
    Caron T; Pasquinet E; van der Lee A; Pansu RB; Rouessac V; Clavaguera S; Bouhadid M; Serein-Spirau F; Lère-Porte JP; Montméat P
    Chemistry; 2014 Nov; 20(46):15069-76. PubMed ID: 25257621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.
    Beyazkilic P; Yildirim A; Bayindir M
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence.
    Content S; Trogler WC; Sailor MJ
    Chemistry; 2000 Jun; 6(12):2205-13. PubMed ID: 10926227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of energy migration in an organic dendrimer macromolecule for sensory signal amplification.
    Guo M; Varnavski O; Narayanan A; Mongin O; Majoral JP; Blanchard-Desce M; Goodson T
    J Phys Chem A; 2009 Apr; 113(16):4763-71. PubMed ID: 19317441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.
    Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z
    Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual detection of trace nitroaromatic explosive residue using photoluminescent metallole-containing polymers.
    Toal SJ; Sanchez JC; Dugan RE; Trogler WC
    J Forensic Sci; 2007 Jan; 52(1):79-83. PubMed ID: 17209914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films.
    Geng Y; Ali MA; Clulow AJ; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Nat Commun; 2015 Sep; 6():8240. PubMed ID: 26370931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds.
    Shi GH; Shang ZB; Wang Y; Jin WJ; Zhang TC
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):247-52. PubMed ID: 17870656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives.
    Aad R; Simic V; Le Cunff L; Rocha L; Sallet V; Sartel C; Lusson A; Couteau C; Lerondel G
    Nanoscale; 2013 Oct; 5(19):9176-80. PubMed ID: 23929279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles.
    Ozturk O; Black TJ; Perrine K; Pizzolato K; Williams CT; Parsons FW; Ratliff JS; Gao J; Murphy CJ; Xie H; Ploehn HJ; Chen DA
    Langmuir; 2005 Apr; 21(9):3998-4006. PubMed ID: 15835967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal-Organic Frameworks.
    Yang J; Wang Z; Hu K; Li Y; Feng J; Shi J; Gu J
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11956-64. PubMed ID: 25988802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.
    Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X
    Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative.
    Selvaraj V; Thomas N; Anthuvan AJ; Nagamony P; Chinnuswamy V
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20540-20549. PubMed ID: 29243153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity.
    Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L
    J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices.
    Martelo LM; das Neves TFP; Figueiredo J; Marques L; Fedorov A; Charas A; Berberan-Santos MN; Burrows HD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.