These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 23677608)

  • 1. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides.
    van Heel AJ; de Jong A; Montalbán-López M; Kok J; Kuipers OP
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W448-53. PubMed ID: 23677608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAGEL2: mining for bacteriocins in genomic data.
    de Jong A; van Heel AJ; Kok J; Kuipers OP
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W647-51. PubMed ID: 20462861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins.
    van Heel AJ; de Jong A; Song C; Viel JH; Kok J; Kuipers OP
    Nucleic Acids Res; 2018 Jul; 46(W1):W278-W281. PubMed ID: 29788290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAGEL: a web-based bacteriocin genome mining tool.
    de Jong A; van Hijum SA; Bijlsma JJ; Kok J; Kuipers OP
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W273-9. PubMed ID: 16845009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining.
    Agrawal P; Amir S; Deepak ; Barua D; Mohanty D
    J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome level analysis of bacteriocins of lactic acid bacteria.
    Singh NP; Tiwari A; Bansal A; Thakur S; Sharma G; Gabrani R
    Comput Biol Chem; 2015 Jun; 56():1-6. PubMed ID: 25733445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria.
    Poorinmohammad N; Bagheban-Shemirani R; Hamedi J
    Antonie Van Leeuwenhoek; 2019 Oct; 112(10):1477-1499. PubMed ID: 31123844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial
    Alkhalili RN; Canbäck B
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species.
    Zhao X; Kuipers OP
    BMC Genomics; 2016 Nov; 17(1):882. PubMed ID: 27821051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome mining for ribosomally synthesized natural products.
    Velásquez JE; van der Donk WA
    Curr Opin Chem Biol; 2011 Feb; 15(1):11-21. PubMed ID: 21095156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Characterization of Corynaridin, a Novel Linaridin from Corynebacterium lactis.
    Pashou E; Reich SJ; Reiter A; Weixler D; Eikmanns BJ; Oldiges M; Riedel CU; Goldbeck O
    Microbiol Spectr; 2023 Feb; 11(1):e0175622. PubMed ID: 36541778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Zhong Z; He B; Li J; Li YX
    Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic Insights into Linaridin Natural Products from Genome Mining and Precursor Peptide Mutagenesis.
    Mo T; Liu WQ; Ji W; Zhao J; Chen T; Ding W; Yu S; Zhang Q
    ACS Chem Biol; 2017 Jun; 12(6):1484-1488. PubMed ID: 28452467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese.
    Gontijo MTP; Silva JS; Vidigal PMP; Martin JGP
    Food Res Int; 2020 Feb; 128():108783. PubMed ID: 31955749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs).
    Cao L; Do T; Link AJ
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery, biosynthesis, and engineering of lantipeptides.
    Knerr PJ; van der Donk WA
    Annu Rev Biochem; 2012; 81():479-505. PubMed ID: 22404629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings.
    van Staden ADP; van Zyl WF; Trindade M; Dicks LMT; Smith C
    Appl Environ Microbiol; 2021 Jun; 87(14):e0018621. PubMed ID: 33962984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.