These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23677651)

  • 1. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting.
    Tasoglu S; Safaee H; Zhang X; Kingsley JL; Catalano PN; Gurkan UA; Nureddin A; Kayaalp E; Anchan RM; Maas RL; Tüzel E; Demirci U
    Small; 2013 Oct; 9(20):3374-84. PubMed ID: 23677651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Sperm sorting based on the imitation of the physiological process on the microfluidic chip].
    Zhang QC; Wang W; Li WX; Zhang Q; Liang GT; Yan W; Zhou XM
    Zhonghua Nan Ke Xue; 2012 Sep; 18(9):803-6. PubMed ID: 23193667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis.
    Wu JK; Chen PC; Lin YN; Wang CW; Pan LC; Tseng FG
    Analyst; 2017 Mar; 142(6):938-944. PubMed ID: 28220153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of microfluidics to sort stallion sperm for intracytoplasmic sperm injection.
    Gonzalez-Castro RA; Carnevale EM
    Anim Reprod Sci; 2019 Mar; 202():1-9. PubMed ID: 30655027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheotaxis-based sperm separation using a biomimicry microfluidic device.
    Sarbandi IR; Lesani A; Moghimi Zand M; Nosrati R
    Sci Rep; 2021 Sep; 11(1):18327. PubMed ID: 34526568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility.
    Nagata MPB; Endo K; Ogata K; Yamanaka K; Egashira J; Katafuchi N; Yamanouchi T; Matsuda H; Goto Y; Sakatani M; Hojo T; Nishizono H; Yotsushima K; Takenouchi N; Hashiyada Y; Yamashita K
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):E3087-E3096. PubMed ID: 29555773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic sperm sorting selects a subpopulation of high-quality sperm with a higher potential for fertilization.
    Sheibak N; Amjadi F; Shamloo A; Zarei F; Zandieh Z
    Hum Reprod; 2024 May; 39(5):902-911. PubMed ID: 38461455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Microfluidic Sperm Sorting, Density Gradient and Swim-up Methods on Semen Oxidation Reduction Potential.
    Gode F; Gürbüz AS; Tamer B; Pala I; Isik AZ
    Urol J; 2020 May; 17(4):397-401. PubMed ID: 32478404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting.
    Zhang X; Khimji I; Gurkan UA; Safaee H; Catalano PN; Keles HO; Kayaalp E; Demirci U
    Lab Chip; 2011 Aug; 11(15):2535-40. PubMed ID: 21677993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species.
    Asghar W; Velasco V; Kingsley JL; Shoukat MS; Shafiee H; Anchan RM; Mutter GL; Tüzel E; Demirci U
    Adv Healthc Mater; 2014 Oct; 3(10):1671-9. PubMed ID: 24753434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples.
    Quinn MM; Jalalian L; Ribeiro S; Ona K; Demirci U; Cedars MI; Rosen MP
    Hum Reprod; 2018 Aug; 33(8):1388-1393. PubMed ID: 30007319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device.
    Matsuura K; Takenami M; Kuroda Y; Hyakutake T; Yanase S; Naruse K
    Reprod Biomed Online; 2012 Jan; 24(1):109-15. PubMed ID: 22116072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sperm quality assessment via separation and sedimentation in a microfluidic device.
    Chen CY; Chiang TC; Lin CM; Lin SS; Jong DS; Tsai VF; Hsieh JT; Wo AM
    Analyst; 2013 Sep; 138(17):4967-74. PubMed ID: 23817531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of microfluidic technologies to human assisted reproduction.
    Smith GD; Takayama S
    Mol Hum Reprod; 2017 Apr; 23(4):257-268. PubMed ID: 28130394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices.
    Ahmadkhani N; Hosseini M; Saadatmand M; Abbaspourrad A
    J Assist Reprod Genet; 2022 Jan; 39(1):19-36. PubMed ID: 35034216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale integrated sperm sorter.
    Chung Y; Zhu X; Gu W; Smith GD; Takayama S
    Methods Mol Biol; 2006; 321():227-44. PubMed ID: 16508075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of a microfluidic sperm sorter on sperm routine parameters and DNA integrity].
    Wang W; Liang GT; Peng YY; Liu DY; Zhou XM
    Zhonghua Nan Ke Xue; 2011 Apr; 17(4):301-4. PubMed ID: 21548204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro survival kinetics of microfluidic-sorted bovine spermatozoa.
    Ogata K; Nagata MPB; Nishizono H; Yamanouchi T; Matsuda H; Ogata Y; Takeda K; Hashiyada Y; Yamashita K
    Andrology; 2021 May; 9(3):977-988. PubMed ID: 33305455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter.
    Nakao S; Takeo T; Watanabe H; Kondoh G; Nakagata N
    Sci Rep; 2020 Jun; 10(1):8862. PubMed ID: 32483250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.