BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23677869)

  • 1. Poly-ε-caprolactone scaffold and reduced in vitro cell culture: beneficial effect on compaction and improved valvular tissue formation.
    Brugmans MM; Driessen-Mol A; Rubbens MP; Cox MA; Baaijens FP
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E289-301. PubMed ID: 23677869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of biomimetic conditions on mechanical and structural integrity of PGA/P4HB and electrospun PCL scaffolds.
    Klouda L; Vaz CM; Mol A; Baaijens FP; Bouten CV
    J Mater Sci Mater Med; 2008 Mar; 19(3):1137-44. PubMed ID: 17701317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1.
    Dvorin EL; Wylie-Sears J; Kaushal S; Martin DP; Bischoff J
    Tissue Eng; 2003 Jun; 9(3):487-93. PubMed ID: 12857416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro model system to quantify stress generation, compaction, and retraction in engineered heart valve tissue.
    van Vlimmeren MA; Driessen-Mol A; Oomens CW; Baaijens FP
    Tissue Eng Part C Methods; 2011 Oct; 17(10):983-91. PubMed ID: 21609192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M; Kehl D; Capulli AK; Parker KK; Hoerstrup SP; Weber B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():203-212. PubMed ID: 28697435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves.
    Lutter G; Puehler T; Cyganek L; Seiler J; Rogler A; Herberth T; Knueppel P; Gorb SN; Sathananthan J; Sellers S; Müller OJ; Frank D; Haben I
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt-electrowriting-enabled anisotropic scaffolds loaded with valve interstitial cells for heart valve tissue Engineering.
    Xu C; Yang K; Xu Y; Meng X; Zhou Y; Xu Y; Li X; Qiao W; Shi J; Zhang D; Wang J; Xu W; Yang H; Luo Z; Dong N
    J Nanobiotechnology; 2024 Jun; 22(1):378. PubMed ID: 38943185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.
    Yang W; Both SK; van Osch GJ; Wang Y; Jansen JA; Yang F
    Acta Biomater; 2015 Feb; 13():254-65. PubMed ID: 25463490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves.
    Dijkman PE; Driessen-Mol A; de Heer LM; Kluin J; van Herwerden LA; Odermatt B; Baaijens FP; Hoerstrup SP
    J Heart Valve Dis; 2012 Sep; 21(5):670-8. PubMed ID: 23167234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid regulates heart valve interstitial cell contraction in fibrin-based scaffolds.
    Lei Y; Bortolin L; Benesch-Lee F; Oguntolu T; Dong Z; Bondah N; Billiar K
    Acta Biomater; 2021 Dec; 136():124-136. PubMed ID: 34592445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering.
    Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy.
    Masoumi N; Larson BL; Annabi N; Kharaziha M; Zamanian B; Shapero KS; Cubberley AT; Camci-Unal G; Manning KB; Mayer JE; Khademhosseini A
    Adv Healthc Mater; 2014 Jun; 3(6):929-39. PubMed ID: 24453182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology.
    Ding C; Qiao Z; Jiang W; Li H; Wei J; Zhou G; Dai K
    Biomaterials; 2013 Sep; 34(28):6706-16. PubMed ID: 23773816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.