These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23678460)

  • 1. Numerical investigation of pulsatile blood flow in a bifurcation model with a non-planar branch: the effect of different bifurcation angles and non-planar branch.
    Arjmandi Tash O; Razavi SE
    Bioimpacts; 2012; 2(4):195-205. PubMed ID: 23678460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possibility of atherosclerosis in an arterial bifurcation model.
    Arjmandi-Tash O; Razavi SE; Zanbouri R
    Bioimpacts; 2011; 1(4):225-8. PubMed ID: 23678432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of aneurysmogenic high positive wall shear stress gradient by wide angle at cerebral bifurcations, independent of flow rate.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurosurg; 2018 Aug; 131(2):442-452. PubMed ID: 30095336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of blood flow in a deformable coronary bifurcation and non-planar branch.
    Razavi SE; Omidi AA; Saghafi Zanjani M
    Bioimpacts; 2014; 4(4):199-204. PubMed ID: 25671176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments.
    Chaniotis AK; Kaiktsis L; Katritsis D; Efstathopoulos E; Pantos I; Marmarellis V
    Phys Med; 2010; 26(3):140-56. PubMed ID: 20400349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of asymmetry on the flow behavior in an idealized arterial bifurcation.
    Nagargoje M; Gupta R
    Comput Methods Biomech Biomed Engin; 2020 May; 23(6):232-247. PubMed ID: 31931612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex formation and associated aneurysmogenic transverse rotational shear stress near the apex of wide-angle cerebral bifurcations.
    Malek AM; Hippelheuser JE; Lauric A
    J Neurosurg; 2022 Jun; 136(6):1726-1737. PubMed ID: 34715656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Analysis of Bifurcation Angles and Branch Patterns in Intracranial Aneurysm Formation.
    Sasaki T; Kakizawa Y; Yoshino M; Fujii Y; Yoroi I; Ichikawa Y; Horiuchi T; Hongo K
    Neurosurgery; 2019 Jul; 85(1):E31-E39. PubMed ID: 30137458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.
    Chen HY; Moussa ID; Davidson C; Kassab GS
    J R Soc Interface; 2012 Jun; 9(71):1187-93. PubMed ID: 22112654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic characterization of transient blood flow in right coronary arteries with varying curvature and side-branch bifurcation angles.
    Liu G; Wu J; Ghista DN; Huang W; Wong KK
    Comput Biol Med; 2015 Sep; 64():117-26. PubMed ID: 26164032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of stenotic side branch hemodynamics in true bifurcation lesions.
    Frattolin J; Zarandi MM; Pagiatakis C; Bertrand OF; Mongrain R
    Comput Biol Med; 2015 Feb; 57():130-8. PubMed ID: 25553358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Relationships Between Hemodynamic Stresses in the Carotid Arteries.
    Ziegler M; Alfraeus J; Good E; Engvall J; de Muinck E; Dyverfeldt P
    Front Cardiovasc Med; 2020; 7():617755. PubMed ID: 33614742
    [No Abstract]   [Full Text] [Related]  

  • 15. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of bifurcation angle and other anatomical characteristics on blood flow - A computational study of non-stented and stented coronary arteries.
    Beier S; Ormiston J; Webster M; Cater J; Norris S; Medrano-Gracia P; Young A; Cowan B
    J Biomech; 2016 Jun; 49(9):1570-1582. PubMed ID: 27062590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reverse flow on the pattern of wall shear stress near arterial branches.
    Kazakidi A; Plata AM; Sherwin SJ; Weinberg PD
    J R Soc Interface; 2011 Nov; 8(64):1594-603. PubMed ID: 21508011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculations of pulsatile flow through a branch: implications for the hemodynamics of atherogenesis.
    Friedman MH; O'Brien V; Ehrlich LW
    Circ Res; 1975 Feb; 36(2):277-85. PubMed ID: 1116238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.