These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 236788)
1. Distribution of NAD(P)H-dependent cytochrome P-450 mixed function oxidase system in the brush border membrane of rabbit kidney cortex. Ichikawa Y Biochim Biophys Acta; 1975 Jul; 394(3):406-15. PubMed ID: 236788 [TBL] [Abstract][Full Text] [Related]
2. Preparation of lung microsomes and a comparison of the distribution of enzymes between subcellular fractions of rabbit lung and liver. Hook GE; Bend JR; Hoel D; Fouts JR; Gram TE J Pharmacol Exp Ther; 1972 Sep; 182(3):474-90. PubMed ID: 5055406 [No Abstract] [Full Text] [Related]
3. Mixed-function oxidases and the alveolar macrophage. Hook GE; Bend JR; Fouts JR Biochem Pharmacol; 1972 Dec; 21(24):3267-77. PubMed ID: 4405368 [No Abstract] [Full Text] [Related]
4. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495 [TBL] [Abstract][Full Text] [Related]
5. Differential distribution of the mixed-function oxidase activities in rabbit kidney. Zenser TV; Mattammal MB; Davis BB J Pharmacol Exp Ther; 1978 Dec; 207(3):719-25. PubMed ID: 731427 [No Abstract] [Full Text] [Related]
6. A comparative study of the hepatic and pulmonary microsomal mixed-function oxidase systems in the rabbit. Bend JR; Hook GE; Easterling RE; Gram TE; Fouts JR J Pharmacol Exp Ther; 1972 Oct; 183(1):206-17. PubMed ID: 4404113 [No Abstract] [Full Text] [Related]
7. The template binding and self-assembly in the reconstitution of microsomal redox chains: electron carriers which do and do not bind with microsomal membranes. Archakov AI; Bachmanova GI; Devichensky VM; Karuzina II; Zherebkova NS; Alimov GA FEBS Lett; 1973 Dec; 37(2):253-6. PubMed ID: 4148692 [No Abstract] [Full Text] [Related]
8. Pyridine nucleotide-dependent electron transport in kidney cortex microsomes: interaction with desaturase and other microsomal mixed-function oxidases. Cinti DL; Montgomery MR Mol Pharmacol; 1977 Jan; 13(1):60-9. PubMed ID: 13295 [No Abstract] [Full Text] [Related]
9. Submitochondrial distribution of components of the steroid 11 beta-hydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex. Yago N; Ichii S J Biochem; 1969 Feb; 65(2):215-24. PubMed ID: 4388938 [No Abstract] [Full Text] [Related]
10. Studies on the microsomal electron-transport system of anaerobically grown yeast. I. Intracellular localization and characterization. Yoshida Y; Kumaoka H; Sato R J Biochem; 1974 Jun; 75(6):1201-10. PubMed ID: 4154327 [No Abstract] [Full Text] [Related]
11. Further studies on the submicrosomal distribution of drug-metabolizing components in liver. Localization in fractions of smooth microsomes. Gram TE; Schroeder DH; Davis DC; Reagan RL; Guarino AM Biochem Pharmacol; 1971 Oct; 20(10):2885-93. PubMed ID: 4398868 [No Abstract] [Full Text] [Related]
12. NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P-450 with high affinity for cytochrome b5. Sugiyama T; Miki N; Yamano T J Biochem; 1980 May; 87(5):1457-67. PubMed ID: 7390994 [TBL] [Abstract][Full Text] [Related]
13. The reconstitution of microsomal redox chains. A comparitive analysis of the effectiveness of membrane self-assembly and template binding of electron carriers. Archakov AI; Bachmanova GI; Devichensky YM; Karuzina II; Zherebkova NS; Alimov GA; Kuznetsova GP; Karyakin AV Biochem J; 1974 Oct; 144(1):1-9. PubMed ID: 4156829 [TBL] [Abstract][Full Text] [Related]
14. Multiple forms of cytochrome P-450 in kidney cortex microsomes of rabbits treated with 3-methylcholanthrene. Ogita K; Kusunose E; Ichihara K; Kusunose M J Biochem; 1982 Sep; 92(3):921-8. PubMed ID: 7142127 [TBL] [Abstract][Full Text] [Related]
15. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions. Golly I; Hlavica P Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485 [TBL] [Abstract][Full Text] [Related]
16. Relationship between the interconversion of cytochrome P-450 and P-420 and its activities in hydroxylations and demethylations by P-450 oxidase systems. Ichikawa Y; Yamano T; Fujishima H Biochim Biophys Acta; 1969 Jan; 171(1):32-46. PubMed ID: 4387594 [No Abstract] [Full Text] [Related]
17. Purification and characterization of two forms of fatty acid omega-hydroxylase cytochrome P-450 from rabbit kidney cortex microsomes. Yoshimura R; Kusunose E; Yokotani N; Yamamoto S; Kubota I; Kusunose M J Biochem; 1990 Oct; 108(4):544-8. PubMed ID: 2127276 [TBL] [Abstract][Full Text] [Related]
18. [Cytochrome P-450-linked mixed function oxidase systems (monooxygenases) of microsomal and mitochondrial types and their substrate specificities (author's transl)]. Ichikawa Y Seikagaku; 1981; 53(4):221-45. PubMed ID: 6273478 [No Abstract] [Full Text] [Related]
19. Mixed function oxidases in sterol metabolism. Separate routes for electron transfer from NADH and NADPH. Crowder RD; Brady DR J Biol Chem; 1979 Jan; 254(2):408-13. PubMed ID: 33169 [TBL] [Abstract][Full Text] [Related]
20. The proteins of the outer membrane of beef heart mitochondria. Hayashi H; Capaldi RA Biochim Biophys Acta; 1972 Sep; 282(1):166-73. PubMed ID: 4341785 [No Abstract] [Full Text] [Related] [Next] [New Search]