These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23679119)
41. Mini-review: Inhibition of biofouling by marine microorganisms. Dobretsov S; Abed RM; Teplitski M Biofouling; 2013; 29(4):423-41. PubMed ID: 23574279 [TBL] [Abstract][Full Text] [Related]
42. Genotypic diversity of oscillatoriacean strains belonging to the genera Geitlerinema and Spirulina determined by 16S rDNA restriction analysis. Margheri MC; Piccardi R; Ventura S; Viti C; Giovannetti L Curr Microbiol; 2003 May; 46(5):359-64. PubMed ID: 12732964 [TBL] [Abstract][Full Text] [Related]
43. Characterization and biofouling potential analysis of two cyanobacterial strains isolated from Cape Verde and Morocco. Romeu MJ; Morais J; Gomes LC; Silva R; Vasconcelos V; Mergulhão FJM FEMS Microbiol Ecol; 2023 Feb; 99(3):. PubMed ID: 36633537 [TBL] [Abstract][Full Text] [Related]
44. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. Wood SA; Rueckert A; Cowan DA; Cary SC ISME J; 2008 Mar; 2(3):308-20. PubMed ID: 18239611 [TBL] [Abstract][Full Text] [Related]
45. Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Staal M; Meysman FJ; Stal LJ Nature; 2003 Oct; 425(6957):504-7. PubMed ID: 14523445 [TBL] [Abstract][Full Text] [Related]
46. Microbial diversity in marine biofilms along a water quality gradient on the Great Barrier Reef. Kriwy P; Uthicke S Syst Appl Microbiol; 2011 Apr; 34(2):116-26. PubMed ID: 21345635 [TBL] [Abstract][Full Text] [Related]
47. Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. Comte K; Sabacká M; Carré-Mlouka A; Elster J; Komárek J FEMS Microbiol Ecol; 2007 Feb; 59(2):366-76. PubMed ID: 17313583 [TBL] [Abstract][Full Text] [Related]
48. Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Hsieh P; Pedersen JZ; Bruno L Photochem Photobiol; 2014; 90(3):533-43. PubMed ID: 24320697 [TBL] [Abstract][Full Text] [Related]
49. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. Heath MW; Wood SA; Ryan KG FEMS Microbiol Ecol; 2010 Jul; 73(1):95-109. PubMed ID: 20455945 [TBL] [Abstract][Full Text] [Related]
50. Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. Foster JS; Green SJ; Ahrendt SR; Golubic S; Reid RP; Hetherington KL; Bebout L ISME J; 2009 May; 3(5):573-87. PubMed ID: 19148145 [TBL] [Abstract][Full Text] [Related]
51. Phylogenetic comparison among the heterocystous cyanobacteria based on a polyphasic approach. Mishra AK; Shukla E; Singh SS Protoplasma; 2013 Feb; 250(1):77-94. PubMed ID: 22307204 [TBL] [Abstract][Full Text] [Related]
52. Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Macedo MF; Miller AZ; Dionísio A; Saiz-Jimenez C Microbiology (Reading); 2009 Nov; 155(Pt 11):3476-3490. PubMed ID: 19778965 [TBL] [Abstract][Full Text] [Related]
53. Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions. Hrčková K; Simek M; Hrouzek P; Lukešová A Folia Microbiol (Praha); 2010 Sep; 55(5):467-73. PubMed ID: 20941582 [TBL] [Abstract][Full Text] [Related]
54. Characterization of biofilm-forming cyanobacteria for biomass and lipid production. Bruno L; Di Pippo F; Antonaroli S; Gismondi A; Valentini C; Albertano P J Appl Microbiol; 2012 Nov; 113(5):1052-64. PubMed ID: 22845917 [TBL] [Abstract][Full Text] [Related]
55. Biodeterioration of stone monuments: Studies on the influence of bioreceptivity on cyanobacterial biofilm growth and on the biocidal efficacy of essential oils in natural hydrogel. Gabriele F; Ranaldi R; Bruno L; Casieri C; Rugnini L; Spreti N Sci Total Environ; 2023 Apr; 870():161901. PubMed ID: 36736398 [TBL] [Abstract][Full Text] [Related]
56. Comparative analysis of cyanobacterial communities in gypsum outcrops: insights from sites in Israel and Poland. Němečková K; Mareš J; Košek F; Culka A; Dudák J; Tymlová V; Žemlička J; Jehlička J Extremophiles; 2024 Jul; 28(3):37. PubMed ID: 39080013 [TBL] [Abstract][Full Text] [Related]
57. Molecular diversity of phototrophic biofilms on building stone. Hallmann C; Stannek L; Fritzlar D; Hause-Reitner D; Friedl T; Hoppert M FEMS Microbiol Ecol; 2013 May; 84(2):355-72. PubMed ID: 23278436 [TBL] [Abstract][Full Text] [Related]
58. Biogenic black crusts on buildings in unpolluted environments. Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538 [TBL] [Abstract][Full Text] [Related]
59. Investigation on Microbial Biodeterioration of the Stone Monuments in Yildiz Technical University-Yildiz Campus-Istanbul-Turkey. Özdemir A; Erguven GO; Adar E; Nuhoglu Y Curr Microbiol; 2020 Nov; 77(11):3288-3299. PubMed ID: 32886197 [TBL] [Abstract][Full Text] [Related]
60. Cyanobacterial flora from polluted marine shores. Parikh A; Shah V; Madamwar D Environ Monit Assess; 2006 Sep; 120(1-3):407-14. PubMed ID: 16758291 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]