These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23679394)

  • 1. Fundamental issues in nonlinear wideband-vibration energy harvesting.
    Halvorsen E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042129. PubMed ID: 23679394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations.
    Blystad LC; Halvorsen E; Husa S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Apr; 57(4):908-19. PubMed ID: 20378453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of An Electromagnetic Energy Harvester with Linear and Nonlinear Springs under Real Vibrations.
    Phan TN; Bader S; Oelmann B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezoelectric monolayers as nonlinear energy harvesters.
    López-Suárez M; Pruneda M; Abadal G; Rurali R
    Nanotechnology; 2014 May; 25(17):175401. PubMed ID: 24722065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Nonlinear Piezoelectric Energy Harvesting System Based on Linear-Element Coupling: Design, Modeling and Dynamic Analysis.
    Zhou S; Yan B; Inman DJ
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators.
    Harne RL
    J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters.
    Tien MH; D'Souza K
    Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190491. PubMed ID: 32082056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of combined fundamental potentials in a nonlinear vibration energy harvester.
    Podder P; Mallick D; Amann A; Roy S
    Sci Rep; 2016 Nov; 6():37292. PubMed ID: 27874033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Analysis of Upright Piezoelectric Energy Harvester under Aerodynamic Vortex-induced Vibration.
    Jia J; Shan X; Upadrashta D; Xie T; Yang Y; Song R
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30562985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of linear and nonlinear MEMS scale electromagnetic energy harvesters for random vibration environments.
    Khan F; Stoeber B; Sassani F
    ScientificWorldJournal; 2014; 2014():742580. PubMed ID: 24605063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive and Robust Operation with Active Fuzzy Harvester under Nonstationary and Random Disturbance Conditions.
    Hara Y; Otsuka K; Makihara K
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting.
    Zhang J; Lin M; Zhou W; Luo T; Qin L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33804044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using an elastic magnifier to increase power output and performance of heart-beat harvesters.
    Galbier AC; Karami MA
    Smart Mater Struct; 2017; 26(9):. PubMed ID: 29674808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Methods to Measure the Coupling Coefficient of Electromagnetic Vibration Energy Harvesters.
    Mösch M; Fischerauer G
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31795156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Low Frequency Vibration Energy Harvester Using ZnO Nanowires on Elastic Interdigitated Electrodes.
    Yoon BR; Park JH; Lee SK
    J Nanosci Nanotechnol; 2019 Jan; 19(1):66-72. PubMed ID: 30327003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.