These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23679460)

  • 1. Nucleation in mesoscopic systems under transient conditions: peptide-induced pore formation in vesicles.
    Zhdanov VP; Höök F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042718. PubMed ID: 23679460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single vesicle analysis reveals nanoscale membrane curvature selective pore formation in lipid membranes by an antiviral α-helical peptide.
    Tabaei SR; Rabe M; Zhdanov VP; Cho NJ; Höök F
    Nano Lett; 2012 Nov; 12(11):5719-25. PubMed ID: 23092308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation.
    Polozov IV; Anantharamaiah GM; Segrest JP; Epand RM
    Biophys J; 2001 Aug; 81(2):949-59. PubMed ID: 11463637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides.
    Kabelka I; Vácha R
    Acc Chem Res; 2021 May; 54(9):2196-2204. PubMed ID: 33844916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Membrane-Interaction Profiles of Two Antiviral Peptides: Insights into Structure-Function Relationship.
    Park S; Jackman JA; Cho NJ
    Langmuir; 2019 Jul; 35(30):9934-9943. PubMed ID: 31291111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II.
    Casallanovo F; de Oliveira FJ; de Souza FC; Ros U; Martínez Y; Pentón D; Tejuca M; Martínez D; Pazos F; Pertinhez TA; Spisni A; Cilli EM; Lanio ME; Alvarez C; Schreier S
    Biopolymers; 2006; 84(2):169-80. PubMed ID: 16170802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AH peptide-mediated formation of charged planar lipid bilayers.
    Zan GH; Jackman JA; Cho NJ
    J Phys Chem B; 2014 Apr; 118(13):3616-21. PubMed ID: 24628664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal conditions for opening of membrane pore by amphiphilic peptides.
    Kabelka I; Vácha R
    J Chem Phys; 2015 Dec; 143(24):243115. PubMed ID: 26723600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rupture of lipid vesicles by a broad-spectrum antiviral peptide: influence of vesicle size.
    Jackman JA; Zan GH; Zhdanov VP; Cho NJ
    J Phys Chem B; 2013 Dec; 117(50):16117-28. PubMed ID: 24274467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving the kinetics of lipid, protein and peptide diffusion in membranes.
    Sanderson JM
    Mol Membr Biol; 2012 Aug; 29(5):118-43. PubMed ID: 22582994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure in de novo designed peptides induced by electrostatic interaction with a lipid bilayer membrane.
    Nygren P; Lundqvist M; Liedberg B; Jonsson BH; Ederth T
    Langmuir; 2010 May; 26(9):6437-48. PubMed ID: 20349970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane pore formation at protein-lipid interfaces.
    Gilbert RJ; Dalla Serra M; Froelich CJ; Wallace MI; Anderluh G
    Trends Biochem Sci; 2014 Nov; 39(11):510-6. PubMed ID: 25440714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations suggest possible novel membrane pore structure.
    Vácha R; Frenkel D
    Langmuir; 2014 Feb; 30(5):1304-10. PubMed ID: 24059441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.