These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 23679487)

  • 1. Chiral symmetry breaking in a reaction-diffusion system.
    Li BW; Deng LY; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042905. PubMed ID: 23679487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field.
    Li BW; Cai MC; Zhang H; Panfilov AV; Dierckx H
    J Chem Phys; 2014 May; 140(18):184901. PubMed ID: 24832300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of a spiral by a circularly polarized electric field in reaction-diffusion systems.
    Chen JX; Zhang H; Li YQ
    J Chem Phys; 2009 Mar; 130(12):124510. PubMed ID: 19334854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation of spirals and chiral symmetry breaking in rayleigh-benard convection.
    Ecke RE; Hu Y; Mainieri R; Ahlers G
    Science; 1995 Sep; 269(5231):1704-7. PubMed ID: 17821641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral symmetry breaking in a microscopic model with asymmetric autocatalysis and inhibition.
    Hatch HW; Stillinger FH; Debenedetti PG
    J Chem Phys; 2010 Dec; 133(22):224502. PubMed ID: 21171686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drift of spiral waves controlled by a polarized electric field.
    Chen JX; Zhang H; Li YQ
    J Chem Phys; 2006 Jan; 124(1):14505. PubMed ID: 16409039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence of using a circularly polarized electric field to control spiral turbulence.
    Ji L; Zhou Y; Li Q; Qiao C; Ouyang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042919. PubMed ID: 24229261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological and chiral symmetry breaking in reaction-diffusion systems.
    Ding DF; Prigogine I
    J Theor Biol; 1987 Sep; 128(2):135-57. PubMed ID: 3431133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry breaking and pattern selection in far-from-equilibrium systems.
    Nicolis G; Prigogine I
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):659-63. PubMed ID: 16592966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of unpinning of spiral waves using circularly polarized electric fields in mathematical models of excitable media.
    Punacha S; A NK; Shajahan TK
    Phys Rev E; 2020 Sep; 102(3-1):032411. PubMed ID: 33076004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous and directed symmetry breaking in the formation of chiral nanocrystals.
    Hananel U; Ben-Moshe A; Diamant H; Markovich G
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11159-11164. PubMed ID: 31097596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sequential Scenario for the Origin of Biological Chirality.
    Popa R
    J Mol Evol; 1997 Feb; 44(2):121-7. PubMed ID: 9069172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth.
    Konstantinov KK; Konstantinova AF
    Orig Life Evol Biosph; 2018 Mar; 48(1):93-122. PubMed ID: 29119380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation-induced chiral symmetry breaking of a naphthalimide-cyanostilbene dyad.
    Li X; Zhu L; Duan S; Zhao Y; Agren H
    Phys Chem Chem Phys; 2014 Nov; 16(43):23854-60. PubMed ID: 25273156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.
    Tschierske C; Ungar G
    Chemphyschem; 2016 Jan; 17(1):9-26. PubMed ID: 26416335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of Handedness in a Single Chiral Nanocrystal via Circularly Polarized Luminescence.
    Vinegrad E; Hananel U; Markovich G; Cheshnovsky O
    ACS Nano; 2019 Jan; 13(1):601-608. PubMed ID: 30521311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion accelerates and enhances chirality selection.
    Shibata R; Saito Y; Hyuga H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026117. PubMed ID: 17025513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Symmetry-Breaking Events as a Synthetic Pathway for Chiral Gold Nanostructures with Spiral Geometries.
    Golze SD; Porcu S; Zhu C; Sutter E; Ricci PC; Kinzel EC; Hughes RA; Neretina S
    Nano Lett; 2021 Apr; 21(7):2919-2925. PubMed ID: 33764074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral symmetry-breaking transition in growth front of crystal phase of 1,1'-binaphthyl in its supercooled melt.
    Asakura K; Nagasaka Y; Hidaka M; Hayashi M; Osanai S; Kondepudi DK
    Chirality; 2004 Feb; 16(2):131-6. PubMed ID: 14712477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial symmetry breaking determines spiral wave chirality.
    Quail T; Shrier A; Glass L
    Phys Rev Lett; 2014 Oct; 113(15):158101. PubMed ID: 25375745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.