These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23679491)

  • 1. Driving-induced bistability in coupled chaotic attractors.
    Agrawal M; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042909. PubMed ID: 23679491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catastrophic bifurcation from riddled to fractal basins.
    Lai YC; Andrade V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056228. PubMed ID: 11736075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bistable chaos without symmetry in generalized synchronization.
    Guan S; Lai CH; Wei GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036209. PubMed ID: 15903548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving-induced multistability in coupled chaotic oscillators: Symmetries and riddled basins.
    Ujjwal SR; Punetha N; Ramaswamy R; Agrawal M; Prasad A
    Chaos; 2016 Jun; 26(6):063111. PubMed ID: 27368776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistability and hidden attractors in the paradigmatic Rössler'76 system.
    Malasoma JM; Malasoma N
    Chaos; 2020 Dec; 30(12):123144. PubMed ID: 33380068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of coupled bistable chaotic systems: experimental study.
    Pisarchik AN; Jaimes-Reátegui R; García-López JH
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):459-73. PubMed ID: 17681912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems.
    Yanchuk S; Kapitaniak T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056235. PubMed ID: 11736082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors.
    Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI
    Phys Rev Lett; 2001 Jul; 87(5):054101. PubMed ID: 11497772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise.
    Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036206. PubMed ID: 11909211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling bistability in microelectromechanical resonators.
    Chen Q; Huang L; Lai YC
    Chaos; 2008 Mar; 18(1):013103. PubMed ID: 18377054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of noise-induced strange nonchaotic attractors.
    Wang X; Lai YC; Lai CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using multiple attractor chaotic systems for communication.
    Carroll TL; Pecora LM
    Chaos; 1999 Jun; 9(2):445-451. PubMed ID: 12779841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attractor selection in chaotic dynamics.
    Meucci R; Allaria E; Salvadori F; Arecchi FT
    Phys Rev Lett; 2005 Oct; 95(18):184101. PubMed ID: 16383904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds.
    Brown R; Rulkov NF
    Chaos; 1997 Sep; 7(3):395-413. PubMed ID: 12779668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lag synchronization and scaling of chaotic attractor in coupled system.
    Bhowmick SK; Pal P; Roy PK; Dana SK
    Chaos; 2012 Jun; 22(2):023151. PubMed ID: 22757558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong persistence of an attractor and generalized partial synchronization in a coupled chaotic system.
    Manjunath G; Fournier-Prunaret D
    Chaos; 2011 Jun; 21(2):023110. PubMed ID: 21721752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractal snapshot components in chaos induced by strong noise.
    Bódai T; Károlyi G; Tél T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046201. PubMed ID: 21599264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.