These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 23679552)
1. Statistical mechanics of a discrete Schrödinger equation with saturable nonlinearity. Samuelsen MR; Khare A; Saxena A; Rasmussen KØ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):044901. PubMed ID: 23679552 [TBL] [Abstract][Full Text] [Related]
2. Statistical mechanics of general discrete nonlinear Schrödinger models: localization transition and its relevance for Klein-Gordon lattices. Johansson M; Rasmussen KØ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066610. PubMed ID: 15697529 [TBL] [Abstract][Full Text] [Related]
3. Statistical mechanics of a discrete nonlinear system. Rasmussen KO; Cretegny T; Kevrekidis PG; Gronbech-Jensen N Phys Rev Lett; 2000 Apr; 84(17):3740-3. PubMed ID: 11019194 [TBL] [Abstract][Full Text] [Related]
4. Localized vortices with a semi-integer charge in nonlinear dynamical lattices. Kevrekidis PG; Malomed BA; Bishop AR; Frantzeskakis DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016605. PubMed ID: 11800809 [TBL] [Abstract][Full Text] [Related]
5. Transport in simple networks described by an integrable discrete nonlinear Schrödinger equation. Nakamura K; Sobirov ZA; Matrasulov DU; Sawada S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026609. PubMed ID: 21929130 [TBL] [Abstract][Full Text] [Related]
6. Modulational instability in two-component discrete media with cubic-quintic nonlinearity. Baizakov BB; Bouketir A; Messikh A; Umarov BA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046605. PubMed ID: 19518369 [TBL] [Abstract][Full Text] [Related]
7. Soliton theory of two-dimensional lattices: the discrete nonlinear schrödinger equation. Arévalo E Phys Rev Lett; 2009 Jun; 102(22):224102. PubMed ID: 19658867 [TBL] [Abstract][Full Text] [Related]
8. Mobility of solitons in one-dimensional lattices with the cubic-quintic nonlinearity. Mejía-Cortés C; Vicencio RA; Malomed BA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052901. PubMed ID: 24329325 [TBL] [Abstract][Full Text] [Related]
9. Moving solitons in the discrete nonlinear Schrödinger equation. Oxtoby OF; Barashenkov IV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036603. PubMed ID: 17930353 [TBL] [Abstract][Full Text] [Related]
10. Discrete nonlinear Schrödinger equation with defects. Trombettoni A; Smerzi A; Bishop AR Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016607. PubMed ID: 12636625 [TBL] [Abstract][Full Text] [Related]
11. Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation. Chen XJ; Yang J Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066608. PubMed ID: 12188852 [TBL] [Abstract][Full Text] [Related]
12. Solitons in a modified discrete nonlinear Schrödinger equation. Molina MI Sci Rep; 2018 Feb; 8(1):2186. PubMed ID: 29391465 [TBL] [Abstract][Full Text] [Related]
13. Superfluidity versus disorder in the discrete nonlinear Schrödinger equation. Trombettoni A; Smerzi A; Bishop AR Phys Rev Lett; 2002 Apr; 88(17):173902. PubMed ID: 12005755 [TBL] [Abstract][Full Text] [Related]