These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23679752)

  • 1. Distinguishing spin relaxation mechanisms in organic semiconductors.
    Harmon NJ; Flatté ME
    Phys Rev Lett; 2013 Apr; 110(17):176602. PubMed ID: 23679752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory for spin diffusion in disordered organic semiconductors.
    Bobbert PA; Wagemans W; van Oost FW; Koopmans B; Wohlgenannt M
    Phys Rev Lett; 2009 Apr; 102(15):156604. PubMed ID: 19518664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of spin-orbit interaction for the electron spin relaxation in organic semiconductors.
    Nuccio L; Willis M; Schulz L; Fratini S; Messina F; D'Amico M; Pratt FL; Lord JS; McKenzie I; Loth M; Purushothaman B; Anthony J; Heeney M; Wilson RM; Hernández I; Cannas M; Sedlak K; Kreouzis T; Gillin WP; Bernhard C; Drew AJ
    Phys Rev Lett; 2013 May; 110(21):216602. PubMed ID: 23745907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids.
    Yu ZG
    Phys Rev Lett; 2011 Mar; 106(10):106602. PubMed ID: 21469820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin relaxation near the metal-insulator transition: dominance of the Dresselhaus spin-orbit coupling.
    Intronati GA; Tamborenea PI; Weinmann D; Jalabert RA
    Phys Rev Lett; 2012 Jan; 108(1):016601. PubMed ID: 22304276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin-flip induced magnetoresistance in positionally disordered organic solids.
    Harmon NJ; Flatté ME
    Phys Rev Lett; 2012 May; 108(18):186602. PubMed ID: 22681098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
    Hovav Y; Feintuch A; Vega S
    J Chem Phys; 2011 Feb; 134(7):074509. PubMed ID: 21341861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating spin relaxation in nanowires with infrared light at room temperature.
    Hossain MI; Bandyopadhyay S; Atulasimha J; Bandyopadhyay S
    Nanotechnology; 2015 Jul; 26(28):281001. PubMed ID: 26111743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron spin relaxation in x-lithium phthalocyanine.
    Sato H; Dalton LA; Ha D; Quine RW; Eaton SS; Eaton GR
    J Phys Chem B; 2007 Jul; 111(28):7972-7. PubMed ID: 17583936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin transport properties of triarylamine-based nanowires.
    Bhattacharya S; Akande A; Sanvito S
    Chem Commun (Camb); 2014 Jun; 50(50):6626-9. PubMed ID: 24825819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Modification toward Long Spin Lifetimes in Organic Conjugated Radicals.
    Dai YZ; Dong BW; Kao Y; Wang ZY; Un HI; Liu Z; Lin ZJ; Li L; Xie FB; Lu Y; Xu MX; Lei T; Sun YJ; Wang JY; Gao S; Jiang SD; Pei J
    Chemphyschem; 2018 Nov; 19(22):2972-2977. PubMed ID: 30085398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors.
    Boross P; Dóra B; Kiss A; Simon F
    Sci Rep; 2013 Nov; 3():3233. PubMed ID: 24252975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excellent spin transport in spin valves based on the conjugated polymer with high carrier mobility.
    Li F; Li T; Chen F; Zhang F
    Sci Rep; 2015 Mar; 5():9355. PubMed ID: 25797862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of extremely long spin relaxation times in an organic nanowire spin valve.
    Pramanik S; Stefanita CG; Patibandla S; Bandyopadhyay S; Garre K; Harth N; Cahay M
    Nat Nanotechnol; 2007 Apr; 2(4):216-9. PubMed ID: 18654265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed EPR characterization of encapsulated atomic hydrogen in octasilsesquioxane cages.
    Mitrikas G
    Phys Chem Chem Phys; 2012 Mar; 14(11):3782-90. PubMed ID: 22323086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossover from hopping to band-like transport in crystalline organic semiconductors: The effect of shallow traps.
    Dong J; Wu C
    J Chem Phys; 2019 Jan; 150(4):044903. PubMed ID: 30709264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast spin dynamics including spin-orbit interaction in semiconductors.
    Krauss M; Aeschlimann M; Schneider HC
    Phys Rev Lett; 2008 Jun; 100(25):256601. PubMed ID: 18643687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hopping-Dominated Spin Transport in Unintentionally Doped Organic Semiconductors.
    Lu Q; Xie S; Qu F
    J Phys Chem Lett; 2021 Apr; 12(14):3540-3544. PubMed ID: 33797911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin relaxation in diluted magnetic semiconductors: GaMnAs as example.
    Krainov IV; Sapega VF; Dimitriev GS; Averkiev NS
    J Phys Condens Matter; 2021 Aug; 33(44):. PubMed ID: 34330123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin relaxation in pseudo-Jahn-Teller low-symmetry Cu(II) complexes in diaqua(L-aspartate)Zn(II).H(2)O crystals.
    Hoffmann SK; Hilczer W; Goslar J; Massa MM; Calvo R
    J Magn Reson; 2001 Nov; 153(1):92-102. PubMed ID: 11700085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.