These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23679829)

  • 1. In situ thermal imaging and absolute temperature monitoring by luminescent diphenylalanine nanotubes.
    Gan Z; Wu X; Zhang J; Zhu X; Chu PK
    Biomacromolecules; 2013 Jun; 14(6):2112-6. PubMed ID: 23679829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of the release of phenylalanine from diphenylalanine nanotubes.
    Sedman VL; Adler-Abramovich L; Allen S; Gazit E; Tendler SJ
    J Am Chem Soc; 2006 May; 128(21):6903-8. PubMed ID: 16719470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability.
    Wang M; Xiong S; Wu X; Chu PK
    Small; 2011 Oct; 7(19):2801-7. PubMed ID: 22049551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the bending beam model to estimate the elasticity of diphenylalanine nanotubes.
    Niu L; Chen X; Allen S; Tendler SJ
    Langmuir; 2007 Jul; 23(14):7443-6. PubMed ID: 17550276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications.
    Adler-Abramovich L; Reches M; Sedman VL; Allen S; Tendler SJ; Gazit E
    Langmuir; 2006 Jan; 22(3):1313-20. PubMed ID: 16430299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation dynamics of deeply supercooled confined water in L,L-diphenylalanine micro/nanotubes.
    Ferreira PM; Ishikawa MS; Kogikoski S; Alves WA; Martinho H
    Phys Chem Chem Phys; 2015 Dec; 17(48):32126-31. PubMed ID: 26088917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer's beta-amyloid polypeptide.
    Görbitz CH
    Chem Commun (Camb); 2006 Jun; (22):2332-4. PubMed ID: 16733570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.
    Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A
    Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.
    Wang M; Du L; Wu X; Xiong S; Chu PK
    ACS Nano; 2011 Jun; 5(6):4448-54. PubMed ID: 21591732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of water in directing diphenylalanine assembly into nanotubes and nanowires.
    Kim J; Han TH; Kim YI; Park JS; Choi J; Churchill DG; Kim SO; Ihee H
    Adv Mater; 2010 Feb; 22(5):583-7. PubMed ID: 20217753
    [No Abstract]   [Full Text] [Related]  

  • 16. Light-induced ferroelectricity in bioinspired self-assembled diphenylalanine nanotubes/microtubes.
    Gan Z; Wu X; Zhu X; Shen J
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):2055-9. PubMed ID: 23307702
    [No Abstract]   [Full Text] [Related]  

  • 17. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nondestructive Raman and atomic force microscopy measurement of molecular structure for individual diphenylalanine nanotubes.
    Lekprasert B; Sedman V; Roberts CJ; Tedler SJ; Notingher I
    Opt Lett; 2010 Dec; 35(24):4193-5. PubMed ID: 21165134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence.
    Handelman A; Kuritz N; Natan A; Rosenman G
    Langmuir; 2016 Mar; 32(12):2847-62. PubMed ID: 26496411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes.
    Wu X; Xiong S; Wang M; Shen J; Chu PK
    Opt Express; 2012 Feb; 20(5):5119-26. PubMed ID: 22418317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.