BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 23679833)

  • 1. Electronic properties of [core+exo]-type gold clusters: factors affecting the unique optical transitions.
    Shichibu Y; Konishi K
    Inorg Chem; 2013 Jun; 52(11):6570-5. PubMed ID: 23679833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphine-Ligated Gold Clusters with Core+ exo Geometries: Unique Properties and Interactions at the Ligand-Cluster Interface.
    Konishi K; Iwasaki M; Shichibu Y
    Acc Chem Res; 2018 Dec; 51(12):3125-3133. PubMed ID: 30427180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Au7](3+): a missing link in the four-electron gold cluster family.
    Shichibu Y; Zhang M; Kamei Y; Konishi K
    J Am Chem Soc; 2014 Sep; 136(37):12892-5. PubMed ID: 25184446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural, electronic, optical, and chiroptical properties of small thiolated gold clusters: the case of Au6 and Au8 cores protected with dimer [Au2(SR)3] and trimer [Au3(SR)4)] motifs.
    Tlahuice A; Garzón IL
    Phys Chem Chem Phys; 2012 May; 14(20):7321-9. PubMed ID: 22513485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of electronic mixing in ruthenium(II) complexes with two equivalent acceptor ligands. spectroscopic, electrochemical, and computational studies.
    Allard MM; Odongo OS; Lee MM; Chen YJ; Endicott JF; Schlegel HB
    Inorg Chem; 2010 Aug; 49(15):6840-52. PubMed ID: 20614928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, spectroscopic and electrochemical properties, and electronic structures of octahedral hexatechnetium(III) clusters [Tc6Q8(CN)6]4- (Q = S, Se).
    Yoshimura T; Ikai T; Takayama T; Sekine T; Kino Y; Shinohara A
    Inorg Chem; 2010 Jul; 49(13):5876-82. PubMed ID: 20518481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation-induced chromism of pyridylethynyl-appended [core+exo]-type Au8 clusters. Resonance-coupled electronic perturbation through π-conjugated group.
    Kobayashi N; Kamei Y; Shichibu Y; Konishi K
    J Am Chem Soc; 2013 Oct; 135(43):16078-81. PubMed ID: 24127776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of DFT methods for molecular orbital eigenvalue calculations.
    Zhang G; Musgrave CB
    J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms.
    Cakır D; Gülseren O
    J Phys Condens Matter; 2012 Aug; 24(30):305301. PubMed ID: 22763370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory for comprehensive orbital energy calculations.
    Nakata A; Tsuneda T
    J Chem Phys; 2013 Aug; 139(6):064102. PubMed ID: 23947838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillation of absorption bands of Zn(1-x)Mn(x)S clusters: an experimental and theoretical study.
    Wu S; Chu H; Xu H; Wang X; Yuan N; Li Y; Wu Z; Du Z; Schelly ZA
    Nanotechnology; 2008 Feb; 19(5):055703. PubMed ID: 21817617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic computational investigation: the geometries and electronic properties of TaSi(n)+ (n = 1-13, 16) clusters.
    Guo P; Ren ZY; Yang AP; Han JG; Bian J; Wang GH
    J Phys Chem A; 2006 Jun; 110(23):7453-60. PubMed ID: 16759135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and density functional theory studies of the molecular geometry and electronic structure of classical and nonclassical radical ions derived from 7-benzhydrylidenenorbornene analogues.
    Namai H; Ikeda H; Hirano T; Ishii H; Mizuno K
    J Phys Chem A; 2007 Aug; 111(32):7898-905. PubMed ID: 17658732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and electronic properties of reduced transition metal oxide clusters, M4O10 and M4O10- (M = Cr, W), from photoelectron spectroscopy and quantum chemical calculations.
    Li S; Zhai HJ; Wang LS; Dixon DA
    J Phys Chem A; 2012 May; 116(21):5256-71. PubMed ID: 22551114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic theoretical study of the electronic structures of porphyrin dimers: DFT and TD-DFT calculations on diporphyrins linked by ethane, ethene, ethyne, imine, and azo bridges.
    Rintoul L; Harper SR; Arnold DP
    Phys Chem Chem Phys; 2013 Nov; 15(43):18951-64. PubMed ID: 24097279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of the intense near-IR absorption and unusual broad UV-visible-NIR spectra of azulenocyanines: density functional theory studies.
    Qi D; Zhang L; Zhang Y; Bian Y; Jiang J
    J Phys Chem A; 2010 Dec; 114(51):13411-7. PubMed ID: 21141865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive study of sodium, copper, and silver clusters over a wide range of sizes 2Itoh M; Kumar V; Adschiri T; Kawazoe Y
    J Chem Phys; 2009 Nov; 131(17):174510. PubMed ID: 19895028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, electronic and vibrational properties of small Ga(x)N(y) (x+y = 2-5) nanoclusters: a B3LYP-DFT study.
    Yadav PS; Yadav RK; Agrawal BK
    J Phys Condens Matter; 2007 Feb; 19(7):076209. PubMed ID: 22251596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Al7Ag and Al7Au clusters with large highest occupied molecular orbital-lowest unoccupied molecular orbital gap.
    Chen MX; Yan XH; Wei SH
    J Phys Chem A; 2007 Sep; 111(35):8659-62. PubMed ID: 17696321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the photoluminescence properties of ionic iridium complexes.
    Terki R; Simoneau LP; Rochefort A
    J Phys Chem A; 2009 Jan; 113(3):534-41. PubMed ID: 19117414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.