These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23680020)

  • 41. Behind the Scenes of Noninvasive Brain-Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter.
    Pitt KM; Brumberg JS; Burnison JD; Mehta J; Kidwai J
    Perspect ASHA Spec Interest Groups; 2019 Dec; 4(6):1622-1636. PubMed ID: 32529035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ethical aspects of brain computer interfaces: a scoping review.
    Burwell S; Sample M; Racine E
    BMC Med Ethics; 2017 Nov; 18(1):60. PubMed ID: 29121942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural correlates of user learning during long-term BCI training for the Cybathlon competition.
    Tortora S; Beraldo G; Bettella F; Formaggio E; Rubega M; Del Felice A; Masiero S; Carli R; Petrone N; Menegatti E; Tonin L
    J Neuroeng Rehabil; 2022 Jul; 19(1):69. PubMed ID: 35790978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals.
    Bashashati A; Fatourechi M; Ward RK; Birch GE
    J Neural Eng; 2007 Jun; 4(2):R32-57. PubMed ID: 17409474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoding of intended saccade direction in an oculomotor brain-computer interface.
    Jia N; Brincat SL; Salazar-Gómez AF; Panko M; Guenther FH; Miller EK
    J Neural Eng; 2017 Aug; 14(4):046007. PubMed ID: 28098561
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Brain-computer interfaces for neurorehabilitation.
    Sreedharan S; Sitaram R; Paul JS; Kesavadas C
    Crit Rev Biomed Eng; 2013; 41(3):269-79. PubMed ID: 24579648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strategies for highlighting items within visual scene displays to support augmentative and alternative communication access for those with physical impairments.
    Pitt KM; McCarthy JW
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1319-1329. PubMed ID: 34788177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.
    Aydın EA; Bay ÖF; Güler İ
    J Med Syst; 2016 Jan; 40(1):27. PubMed ID: 26547847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Development of practicality of EEG-based brain-computer interface].
    Lin H; He Q; Yan Q; Feng Z; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):702-6. PubMed ID: 20649048
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using brain-computer interfaces: a scoping review of studies employing social research methods.
    Kögel J; Schmid JR; Jox RJ; Friedrich O
    BMC Med Ethics; 2019 Mar; 20(1):18. PubMed ID: 30845952
    [TBL] [Abstract][Full Text] [Related]  

  • 54. What would brain-computer interface users want: opinions and priorities of potential users with spinal cord injury.
    Huggins JE; Moinuddin AA; Chiodo AE; Wren PA
    Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S38-45.e1-5. PubMed ID: 25721546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A BCI painting system using a hybrid control approach based on SSVEP and P300.
    Tang Z; Wang X; Wu J; Ping Y; Guo X; Cui Z
    Comput Biol Med; 2022 Nov; 150():106118. PubMed ID: 36166987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain-computer interfaces.
    Wolpaw JR
    Handb Clin Neurol; 2013; 110():67-74. PubMed ID: 23312631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An artificial intelligence that increases simulated brain-computer interface performance.
    Olsen S; Zhang J; Liang KF; Lam M; Riaz U; Kao JC
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33978599
    [No Abstract]   [Full Text] [Related]  

  • 59. BCI-Utility Metric for Asynchronous P300 Brain-Computer Interface Systems.
    Ma G; Kang J; Thompson DE; Huggins JE
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3968-3977. PubMed ID: 37792654
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous multiple-stimulus auditory brain-computer interface with semi-supervised learning and prior probability distribution tuning.
    Ogino M; Hamada N; Mitsukura Y
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317357
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.