These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23680041)

  • 1. Classification of emotional states from electrocardiogram signals: a non-linear approach based on Hurst.
    Selvaraj J; Murugappan M; Wan K; Yaacob S
    Biomed Eng Online; 2013 May; 12():44. PubMed ID: 23680041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: a comparative study.
    Yuvaraj R; Murugappan M; Ibrahim NM; Omar MI; Sundaraj K; Mohamad K; Palaniappan R; Satiyan M
    J Integr Neurosci; 2014 Mar; 13(1):89-120. PubMed ID: 24738541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency study of facial electromyography signals with respect to emotion recognition.
    Selvaraj J; Murugappan M; Wan K; Yaacob S
    Biomed Tech (Berl); 2014 Jun; 59(3):241-9. PubMed ID: 24402883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals.
    Acharya UR; Sree SV; Alvin AP; Yanti R; Suri JS
    Int J Neural Syst; 2012 Apr; 22(2):1250002. PubMed ID: 23627588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT).
    Murugappan M; Murugappan S; Zheng BS
    J Phys Ther Sci; 2013 Jul; 25(7):753-9. PubMed ID: 24259846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hurst exponent of cardiac response to positive and negative emotional film stimuli using wavelet.
    Costa T; Galati D; Rognoni E
    Auton Neurosci; 2009 Dec; 151(2):183-5. PubMed ID: 19747885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emotion recognition from EEG using higher order crossings.
    Petrantonakis PC; Hadjileontiadis LJ
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):186-97. PubMed ID: 19858033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated identification of normal and diabetes heart rate signals using nonlinear measures.
    Rajendra Acharya U; Faust O; Adib Kadri N; Suri JS; Yu W
    Comput Biol Med; 2013 Oct; 43(10):1523-9. PubMed ID: 24034744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.
    Ubeyli ED
    Comput Methods Programs Biomed; 2009 Mar; 93(3):313-21. PubMed ID: 19084286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimodal affect recognition based on autoregressive hidden Markov models from physiological signals.
    Patlar Akbulut F; Perros HG; Shahzad M
    Comput Methods Programs Biomed; 2020 Oct; 195():105571. PubMed ID: 32485512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson's disease patients.
    Yuvaraj R; Murugappan M
    Cogn Neurodyn; 2016 Jun; 10(3):225-34. PubMed ID: 27275378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic classifier of emotions built from entropy of noise.
    Ferreira J; Brás S; Silva CF; Soares SC
    Psychophysiology; 2017 Apr; 54(4):620-627. PubMed ID: 28039856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of effective features for ECG beat recognition based on nonlinear correlations.
    Chen YH; Yu SN
    Artif Intell Med; 2012 Jan; 54(1):43-52. PubMed ID: 21963421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2s of ECG signals.
    Sudarshan VK; Acharya UR; Oh SL; Adam M; Tan JH; Chua CK; Chua KP; Tan RS
    Comput Biol Med; 2017 Apr; 83():48-58. PubMed ID: 28231511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated characterization of cardiovascular diseases using relative wavelet nonlinear features extracted from ECG signals.
    Adam M; Oh SL; Sudarshan VK; Koh JE; Hagiwara Y; Tan JH; Tan RS; Acharya UR
    Comput Methods Programs Biomed; 2018 Jul; 161():133-143. PubMed ID: 29852956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Cardiac Abnormalities from Multilead ECG using Multiscale Phase Alternation Features.
    Tripathy RK; Dandapat S
    J Med Syst; 2016 Jun; 40(6):143. PubMed ID: 27118009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.
    Ferdinando H; Seppanen T; Alasaarela E
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():450-453. PubMed ID: 29059907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel automated diagnostic system for classification of myocardial infarction ECG signals using an optimal biorthogonal filter bank.
    Sharma M; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():341-356. PubMed ID: 30049414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals.
    Khezri M; Firoozabadi M; Sharafat AR
    Comput Methods Programs Biomed; 2015 Nov; 122(2):149-64. PubMed ID: 26253158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.
    Elhaj FA; Salim N; Harris AR; Swee TT; Ahmed T
    Comput Methods Programs Biomed; 2016 Apr; 127():52-63. PubMed ID: 27000289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.