BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 23680081)

  • 1. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-induced extramembrane conformation switch controlling alamethicin assembly and the channel current.
    Futaki S; Asami K
    Chem Biodivers; 2007 Jun; 4(6):1313-22. PubMed ID: 17589883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alamethicin-leucine zipper hybrid peptide: a prototype for the design of artificial receptors and ion channels.
    Futaki S; Fukuda M; Omote M; Yamauchi K; Yagami T; Niwa M; Sugiura Y
    J Am Chem Soc; 2001 Dec; 123(49):12127-34. PubMed ID: 11734010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of extramembrane conformational change into current: construction of metal-gated ion channel.
    Kiwada T; Sonomura K; Sugiura Y; Asami K; Futaki S
    J Am Chem Soc; 2006 May; 128(18):6010-1. PubMed ID: 16669650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a Ca(2+)-gated artificial channel by fusing alamethicin with a calmodulin-derived extramembrane segment.
    Noshiro D; Sonomura K; Yu HH; Imanishi M; Asami K; Futaki S
    Bioconjug Chem; 2013 Feb; 24(2):188-95. PubMed ID: 23272973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels.
    Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R
    Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transduction of membrane tension by the ion channel alamethicin.
    Opsahl LR; Webb WW
    Biophys J; 1994 Jan; 66(1):71-4. PubMed ID: 7510531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetrical ion-channel model inferred from two-dimensional crystallization of a peptide antibiotic.
    Ionov R; El-Abed A; Angelova A; Goldmann M; Peretti P
    Biophys J; 2000 Jun; 78(6):3026-35. PubMed ID: 10827981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model ion channels: gramicidin and alamethicin.
    Woolley GA; Wallace BA
    J Membr Biol; 1992 Aug; 129(2):109-36. PubMed ID: 1279177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-channels: goals for function-oriented synthesis.
    Reiß P; Koert U
    Acc Chem Res; 2013 Dec; 46(12):2773-80. PubMed ID: 23651489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes.
    Luchian T; Mereuta L
    Langmuir; 2006 Sep; 22(20):8452-7. PubMed ID: 16981762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy.
    Marsh D
    Biochemistry; 2009 Feb; 48(4):729-37. PubMed ID: 19133787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using ion channel-forming peptides to quantify protein-ligand interactions.
    Mayer M; Semetey V; Gitlin I; Yang J; Whitesides GM
    J Am Chem Soc; 2008 Jan; 130(4):1453-65. PubMed ID: 18179217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of protein-ligand interaction on the membranes using C-terminus biotin-tagged alamethicin.
    Zhang Y; Futaki S; Kiwada T; Sugiura Y
    Bioorg Med Chem; 2002 Aug; 10(8):2635-9. PubMed ID: 12057652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.
    Mak DO; Webb WW
    Biophys J; 1995 Dec; 69(6):2337-49. PubMed ID: 8599640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.