These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 23680546)

  • 1. Interpolation in the standard additions method.
    Andrade JM; Terán-Baamonde J; Soto-Ferreiro RM; Carlosena A
    Anal Chim Acta; 2013 May; 780():13-9. PubMed ID: 23680546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard additions: myth and reality.
    Ellison SL; Thompson M
    Analyst; 2008 Aug; 133(8):992-7. PubMed ID: 18645637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying uncertainty of determination by standard additions and serial dilutions methods taking into account standard uncertainties in both axes.
    Hyk W; Stojek Z
    Anal Chem; 2013 Jun; 85(12):5933-9. PubMed ID: 23678943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data.
    Balabin RM; Smirnov SV
    Analyst; 2012 Apr; 137(7):1604-10. PubMed ID: 22337290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of quality performance parameters for straight line calibration curves related to the spread of the abscissa values around their mean.
    De Beer JO; De Beer TR; Goeyens L
    Anal Chim Acta; 2007 Feb; 584(1):57-65. PubMed ID: 17386585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nonlinearities and uncorrelated or correlated errors in realistic simulated data on the prediction abilities of augmented classical least squares and partial least squares.
    Melgaard DK; Haaland DM
    Appl Spectrosc; 2004 Sep; 58(9):1065-73. PubMed ID: 15479523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds.
    Maurice-Van Eijndhoven MH; Soyeurt H; Dehareng F; Calus MP
    Animal; 2013 Feb; 7(2):348-54. PubMed ID: 23031721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of different approaches to applying the standard additions calibration method.
    Sloop JT; Gonçalves DA; O'Brien LM; Carter JA; Jones BT; Donati GL
    Anal Bioanal Chem; 2021 Feb; 413(5):1293-1302. PubMed ID: 33388844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: comparison of a new calibration transfer method with a slope/bias correction method.
    Watari M; Ozaki Y
    Appl Spectrosc; 2004 Oct; 58(10):1210-8. PubMed ID: 18070400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of bias-correction methods for exposure measurement error using repeated measurements with and without missing data.
    Batistatou E; McNamee R
    Stat Med; 2012 Dec; 31(28):3467-80. PubMed ID: 22733598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.
    Kilian R; Matschinger H; Löeffler W; Roick C; Angermeyer MC
    J Ment Health Policy Econ; 2002 Mar; 5(1):21-31. PubMed ID: 12529567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating concentration estimation errors in ELISA microarray experiments.
    Daly DS; White AM; Varnum SM; Anderson KK; Zangar RC
    BMC Bioinformatics; 2005 Jan; 6():17. PubMed ID: 15673468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of instrument error and method agreement.
    Chatburn RL
    AANA J; 1996 Jun; 64(3):261-8. PubMed ID: 9095698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closed-form confidence intervals on measures of precision for an interlaboratory study.
    Nijhuis MB; van den Heuvel ER
    J Biopharm Stat; 2007; 17(1):123-42. PubMed ID: 17219759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On using summary statistics from an external calibration sample to correct for covariate measurement error.
    Guo Y; Little RJ; McConnell DS
    Epidemiology; 2012 Jan; 23(1):165-74. PubMed ID: 22157312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weighted least-squares in calibration: what difference does it make?
    Tellinghuisen J
    Analyst; 2007 Jun; 132(6):536-43. PubMed ID: 17525810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding confidence limits on population growth rates: bootstrap and analytic methods.
    Picard N; Chagneau P; Mortier F; Bar-Hen A
    Math Biosci; 2009 May; 219(1):23-31. PubMed ID: 19249319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The accuracy of laboratory measurements in clinical chemistry: a study of 11 routine chemistry analytes in the College of American Pathologists Chemistry Survey with fresh frozen serum, definitive methods, and reference methods.
    Ross JW; Miller WG; Myers GL; Praestgaard J
    Arch Pathol Lab Med; 1998 Jul; 122(7):587-608. PubMed ID: 9674541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different linear calibration approaches for LC-MS bioanalysis.
    Tan A; Awaiye K; Jose B; Joshi P; Trabelsi F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Dec; 911():192-202. PubMed ID: 23217324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.