BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23680555)

  • 1. Fluorescent detection of protein kinase based on zirconium ions-immobilized magnetic nanoparticles.
    Tan P; Lei C; Liu X; Qing M; Nie Z; Guo M; Huang Y; Yao S
    Anal Chim Acta; 2013 May; 780():89-94. PubMed ID: 23680555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent detection of protein kinase based on positively charged gold nanoparticles.
    Lu G; Tan P; Lei C; Nie Z; Huang Y; Yao S
    Talanta; 2014 Oct; 128():360-5. PubMed ID: 25059172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free fluorescent detection of thrombin activity based on a recombinant enhanced green fluorescence protein and nickel ions immobilized nitrilotriacetic acid-coated magnetic nanoparticles.
    Wang M; Lei C; Nie Z; Guo M; Huang Y; Yao S
    Talanta; 2013 Nov; 116():468-73. PubMed ID: 24148431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots.
    Xu X; Liu X; Nie Z; Pan Y; Guo M; Yao S
    Anal Chem; 2011 Jan; 83(1):52-9. PubMed ID: 21128608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-readout fluorescent assay of protein kinase activity by use of TiO2-coated magnetic microspheres.
    Bai J; Zhao Y; Wang Z; Liu C; Wang Y; Li Z
    Anal Chem; 2013 May; 85(9):4813-21. PubMed ID: 23581884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ru(II) encapsulated phosphorylate-terminated silica nanoparticles-based electrochemiluminescent strategy for label-free assay of protein kinase activity and inhibition.
    Chen Z; He X; Wang Y; Wang K; Du Y; Yan G
    Biosens Bioelectron; 2013 Mar; 41():519-25. PubMed ID: 23102431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation-directed assembly of a single quantum dot based nanosensor for protein kinase assay.
    Wang LJ; Yang Y; Zhang CY
    Anal Chem; 2015; 87(9):4696-703. PubMed ID: 25827722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptameric peptide for one-step detection of protein kinase.
    Xu X; Zhou J; Liu X; Nie Z; Qing M; Guo M; Yao S
    Anal Chem; 2012 Jun; 84(11):4746-53. PubMed ID: 22533554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide-peptide nanocomplex as a versatile fluorescence probe of protein kinase activity based on phosphorylation protection against carboxypeptidase digestion.
    Zhou J; Xu X; Liu W; Liu X; Nie Z; Qing M; Nie L; Yao S
    Anal Chem; 2013 Jun; 85(12):5746-54. PubMed ID: 23734972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive protein kinase activity assay based on electrochemiluminescence nanoprobes.
    Zhao Z; Zhou X; Xing D
    Biosens Bioelectron; 2012 Jan; 31(1):299-304. PubMed ID: 22100765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mix-and-read fluorescence strategy for the switch-on probing of kinase activity based on an aptameric-peptide/graphene-oxide platform.
    Lei C; Xu X; Zhou J; Liu X; Nie Z; Qing M; Li P; Huang Y; Yao S
    Chem Asian J; 2014 Sep; 9(9):2560-7. PubMed ID: 25048161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DNA-based electrochemical strategy for label-free monitoring the activity and inhibition of protein kinase.
    Xu X; Nie Z; Chen J; Fu Y; Li W; Shen Q; Yao S
    Chem Commun (Camb); 2009 Dec; (45):6946-8. PubMed ID: 19904356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of phosphopeptides using zirconium-chlorophosphonazo chelate-modified silica nanoparticles.
    Zhao PX; Zhao Y; Guo XF; Wang H; Zhang HS
    J Chromatogr A; 2011 May; 1218(18):2528-39. PubMed ID: 21444088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage.
    Zhou J; Xu X; Liu X; Li H; Nie Z; Qing M; Huang Y; Yao S
    Biosens Bioelectron; 2014 Mar; 53():295-300. PubMed ID: 24157613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides.
    Li YC; Lin YS; Tsai PJ; Chen CT; Chen WY; Chen YC
    Anal Chem; 2007 Oct; 79(19):7519-25. PubMed ID: 17784733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chemically functionalized magnetic nanoplatform for rapid and specific biomolecular recognition and separation.
    Lin PC; Yu CC; Wu HT; Lu YW; Han CL; Su AK; Chen YJ; Lin CC
    Biomacromolecules; 2013 Jan; 14(1):160-8. PubMed ID: 23198853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical strategy for sensing protein phosphorylation.
    Miao P; Ning L; Li X; Li P; Li G
    Bioconjug Chem; 2012 Jan; 23(1):141-5. PubMed ID: 22148592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle-based electrochemical detection of protein phosphorylation.
    Kerman K; Chikae M; Yamamura S; Tamiya E
    Anal Chim Acta; 2007 Apr; 588(1):26-33. PubMed ID: 17386790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid enrichment and determination of phosphopeptides using bacterial magnetic particles via both strong and weak interactions.
    Huang J; Guo L; Zheng LM
    Analyst; 2010 Mar; 135(3):559-63. PubMed ID: 20174710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorometric assay for rapid enrichment and determination of bacteria by using zirconium-metal organic frameworks as both capture surface and signal amplification tag.
    Yang S; Guo Y; Fan J; Yang Y; Zuo C; Bai S; Sheng S; Li J; Xie G
    Mikrochim Acta; 2020 Feb; 187(3):188. PubMed ID: 32095939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.