These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 23680627)
1. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes. Rosman M; Hall RC; Chan C; Ang A; Koh J; Htoon HM; Tan DT; Mehta JS J Cataract Refract Surg; 2013 Jul; 39(7):1066-73. PubMed ID: 23680627 [TBL] [Abstract][Full Text] [Related]
2. Visual outcomes comparison of 2 femtosecond laser platforms for laser in situ keratomileusis. Ang M; Mehta JS; Rosman M; Li L; Koh JC; Htoon HM; Tan D; Chan C J Cataract Refract Surg; 2013 Nov; 39(11):1647-52. PubMed ID: 24054977 [TBL] [Abstract][Full Text] [Related]
3. Prospective contralateral eye study to compare 80- and 120-μm flap LASIK using the VisuMax femtosecond laser. Lim DH; Keum JE; Ju WK; Lee JH; Chung TY; Chung ES J Refract Surg; 2013 Jul; 29(7):462-8. PubMed ID: 23820228 [TBL] [Abstract][Full Text] [Related]
4. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis for patients with myopia: a prospective randomized contralateral eye study. He L; Liu A; Manche EE Am J Ophthalmol; 2014 Jun; 157(6):1170-1178.e1. PubMed ID: 24560995 [TBL] [Abstract][Full Text] [Related]
5. Single versus double femtosecond laser pass for incomplete laser in situ keratomileusis flap in contralateral eyes: visual and optical outcomes. Muñoz G; Albarrán-Diego C; Ferrer-Blasco T; Javaloy J; García-Lázaro S J Cataract Refract Surg; 2012 Jan; 38(1):8-15. PubMed ID: 22153090 [TBL] [Abstract][Full Text] [Related]
6. Safety, efficacy, and predictability of laser in situ keratomileusis to correct myopia or myopic astigmatism with a 750 Hz scanning-spot laser system. Tomita M; Watabe M; Yukawa S; Nakamura N; Nakamura T; Magnago T J Cataract Refract Surg; 2014 Feb; 40(2):251-8. PubMed ID: 24345530 [TBL] [Abstract][Full Text] [Related]
7. Visual outcomes after wavefront-guided photorefractive keratectomy and wavefront-guided laser in situ keratomileusis: Prospective comparison. Moshirfar M; Schliesser JA; Chang JC; Oberg TJ; Mifflin MD; Townley R; Livingston MK; Kurz CJ J Cataract Refract Surg; 2010 Aug; 36(8):1336-43. PubMed ID: 20656157 [TBL] [Abstract][Full Text] [Related]
8. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: one-year results. Yu CQ; Manche EE J Cataract Refract Surg; 2015 Apr; 41(4):740-8. PubMed ID: 25840298 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Epi-LASIK and off-flap Epi-LASIK for the treatment of low and moderate myopia. Kalyvianaki MI; Kymionis GD; Kounis GA; Panagopoulou SI; Grentzelos MA; Pallikaris IG Ophthalmology; 2008 Dec; 115(12):2174-80. PubMed ID: 19041475 [TBL] [Abstract][Full Text] [Related]
11. Femtosecond (FS) laser vision correction procedure for moderate to high myopia: a prospective study of ReLEx(®) flex and comparison with a retrospective study of FS-laser in situ keratomileusis. Vestergaard A; Ivarsen A; Asp S; Hjortdal JØ Acta Ophthalmol; 2013 Jun; 91(4):355-62. PubMed ID: 22512839 [TBL] [Abstract][Full Text] [Related]
13. Wavefront-optimized excimer laser in situ keratomileusis for myopia and myopic astigmatism: refractive outcomes and corneal densitometry. Fares U; Otri AM; Al-Aqaba MA; Faraj L; Dua HS J Cataract Refract Surg; 2012 Dec; 38(12):2131-8. PubMed ID: 23084157 [TBL] [Abstract][Full Text] [Related]
14. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser. Cummings AB; Cummings BK; Kelly GE J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500 [TBL] [Abstract][Full Text] [Related]
15. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome. Lin MY; Chang DC; Hsu WM; Wang IJ J Cataract Refract Surg; 2012 Jun; 38(6):992-9. PubMed ID: 22624898 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. Lin F; Xu Y; Yang Y J Refract Surg; 2014 Apr; 30(4):248-54. PubMed ID: 24702576 [TBL] [Abstract][Full Text] [Related]
17. Spherical and aspherical photorefractive keratectomy and laser in-situ keratomileusis for moderate to high myopia: two prospective, randomized clinical trials. Summit technology PRK-LASIK study group. Steinert RF; Hersh PS Trans Am Ophthalmol Soc; 1998; 96():197-221; discussion 221-7. PubMed ID: 10360290 [TBL] [Abstract][Full Text] [Related]
18. Visual outcomes after femtosecond laser in situ keratomileusis flap complications. Jadav DS; Desai N; Taylor KR; Caldwell MC; Panday VA; Reilly CD J Cataract Refract Surg; 2015 Nov; 41(11):2487-92. PubMed ID: 26703500 [TBL] [Abstract][Full Text] [Related]
19. Femtosecond sub-bowman keratomileusis: a prospective, long-term, intereye comparison of safety and outcomes of 90- versus 100-μm flaps. Prakash G; Agarwal A; Kumar DA; Chari M; Agarwal A; Jacob S; Srivastava D Am J Ophthalmol; 2011 Oct; 152(4):582-590.e2. PubMed ID: 21683336 [TBL] [Abstract][Full Text] [Related]
20. Long-term visual and refractive outcomes following surface ablation techniques in a large population for myopia correction. Kulkarni SV; AlMahmoud T; Priest D; Taylor SE; Mintsioulis G; Jackson WB Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):609-19. PubMed ID: 23221080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]