These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23680815)

  • 1. Engineering electrodeposited ZnO films and their memristive switching performance.
    Zoolfakar AS; Ab Kadir R; Rani RA; Balendhran S; Liu X; Kats E; Bhargava SK; Bhaskaran M; Sriram S; Zhuiykov S; O'Mullane AP; Kalantar-Zadeh K
    Phys Chem Chem Phys; 2013 Jul; 15(25):10376-84. PubMed ID: 23680815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Flexible and Transparent Memristive Devices Using Cross-Stacked Oxide/Metal/Oxide Electrode Layers.
    Lee BR; Park JH; Lee TH; Kim TG
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5215-5222. PubMed ID: 30623639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly stable resistive switching on monocrystalline ZnO.
    Shih A; Zhou W; Qiu J; Yang HJ; Chen S; Mi Z; Shih I
    Nanotechnology; 2010 Mar; 21(12):125201. PubMed ID: 20182012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodeposited ZnO-nanowire/Cu₂O photovoltaic device with highly resistive ZnO intermediate layer.
    Izaki M; Ohta T; Kondo M; Takahashi T; Mohamad FB; Zamzuri M; Sasano J; Shinagawa T; Pauporté T
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13461-9. PubMed ID: 25078882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the Schottky barrier height of Au/ZnO nanocrystal by zinc vacancies using a hydrothermal seed layer.
    Hwang JD; Lin YL; Kung CY
    Nanotechnology; 2013 Mar; 24(11):115709. PubMed ID: 23455619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.
    Yao IC; Lee DY; Tseng TY; Lin P
    Nanotechnology; 2012 Apr; 23(14):145201. PubMed ID: 22433578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Cl-Doped ZnO Thin Films by a Cathodic Electrodeposition for Use as a Window Layer in CIGS Solar Cells.
    Ao J; Fu R; Jeng MJ; Bi J; Yao L; Gao S; Sun G; He Q; Zhou Z; Sun Y; Chang LB
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29874831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TEM Nanostructural Investigation of Ag-Conductive Filaments in Polycrystalline ZnO-Based Resistive Switching Devices.
    Bejtka K; Milano G; Ricciardi C; Pirri CF; Porro S
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29451-29460. PubMed ID: 32508083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application.
    Zhang Z; Hossain MF; Arakawa T; Takahashi T
    J Hazard Mater; 2010 Apr; 176(1-3):973-8. PubMed ID: 20007007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments.
    Zhuge F; Peng S; He C; Zhu X; Chen X; Liu Y; Li RW
    Nanotechnology; 2011 Jul; 22(27):275204. PubMed ID: 21613680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-mediated growth of nanostructured zinc oxide thin films via electrodeposition and their photoelectrochemical performance.
    Inamdar AI; Mujawar SH; Ganesan V; Patil PS
    Nanotechnology; 2008 Aug; 19(32):325706. PubMed ID: 21828828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of oxidizable electrode material on resistive switching characteristics of ZnO(x)S(1-x) films.
    Cho K; Park S; Chung I; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8187-90. PubMed ID: 25958497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties.
    Pradhan D; Kumar M; Ando Y; Leung KT
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):789-96. PubMed ID: 20356003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of zinc vacancies in bipolar resistance switching of Ag/ZnO/Pt memory structures.
    Yalishev VSh; Yuldashev SU; Kim YS; Park BH
    Nanotechnology; 2012 Sep; 23(37):375201. PubMed ID: 22922356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale-Resistive Switching in Forming-Free Zinc Oxide Memristive Structures.
    Tominov RV; Vakulov ZE; Polupanov NV; Saenko AV; Avilov VI; Ageev OA; Smirnov VA
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive Behavior Enabled by Amorphous-Crystalline 2D Oxide Heterostructure.
    Yin X; Wang Y; Chang TH; Zhang P; Li J; Xue P; Long Y; Shohet JL; Voyles PM; Ma Z; Wang X
    Adv Mater; 2020 Jun; 32(22):e2000801. PubMed ID: 32319153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour.
    Aoki Y; Wiemann C; Feyer V; Kim HS; Schneider CM; Ill-Yoo H; Martin M
    Nat Commun; 2014 Mar; 5():3473. PubMed ID: 24632885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical properties of cadmium chalcogenide-sensitized textured porous zinc oxide plate electrodes.
    Emin S; Fanetti M; Abdi FF; Lisjak D; Valant M; van de Krol R; Dam B
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1113-21. PubMed ID: 23323515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradual electroforming and memristive switching in Pt/CuO(x)/Si/Pt systems.
    Wei LL; Shang DS; Sun JR; Lee SB; Sun ZG; Shen BG
    Nanotechnology; 2013 Aug; 24(32):325202. PubMed ID: 23867151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.