BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23680844)

  • 21. Adaptive evolution of hepcidin genes in antarctic notothenioid fishes.
    Xu Q; Cheng CH; Hu P; Ye H; Chen Z; Cao L; Chen L; Shen Y; Chen L
    Mol Biol Evol; 2008 Jun; 25(6):1099-112. PubMed ID: 18310660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolutionary analysis on complement genes reveals that fishes C3 and C9 experience different evolutionary patterns.
    Wang S; Wang R; Xu T
    Fish Shellfish Immunol; 2013 Dec; 35(6):2040-5. PubMed ID: 24184007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of the complement system C3 gene in Antarctic teleosts.
    Melillo D; Varriale S; Giacomelli S; Natale L; Bargelloni L; Oreste U; Pinto MR; Coscia MR
    Mol Immunol; 2015 Aug; 66(2):299-309. PubMed ID: 25909494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel ovine polymorphisms and adaptive evolution in mammalian TLR2 suggest existence of multiple pathogen binding regions.
    Smith SA; Haig D; Emes RD
    Gene; 2014 May; 540(2):217-25. PubMed ID: 24582976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio).
    Kongchum P; Hallerman EM; Hulata G; David L; Palti Y
    Fish Shellfish Immunol; 2011 Jan; 30(1):361-71. PubMed ID: 21087670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innate immunity at the mucosal surface: role of toll-like receptor 3 and toll-like receptor 9 in cervical epithelial cell responses to microbial pathogens.
    Andersen JM; Al-Khairy D; Ingalls RR
    Biol Reprod; 2006 May; 74(5):824-31. PubMed ID: 16421230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.
    Mikami T; Miyashita H; Takatsuka S; Kuroki Y; Matsushima N
    Gene; 2012 Jul; 503(2):235-43. PubMed ID: 22587897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds.
    Vinkler M; Bainová H; Bryja J
    Genet Sel Evol; 2014 Nov; 46(1):72. PubMed ID: 25387947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Widespread positive selection on cetacean TLR extracellular domain.
    Xu S; Tian R; Lin Y; Yu Z; Zhang Z; Niu X; Wang X; Yang G
    Mol Immunol; 2019 Feb; 106():135-142. PubMed ID: 30597475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and comprehensive analysis of the miiuy croaker TLR2 reveals a direct evidence for intron insert and loss.
    Xu T; Meng F; Zhu Z; Wang R
    Fish Shellfish Immunol; 2013 Jan; 34(1):119-28. PubMed ID: 23069786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization, evolution, and expression analysis of TLR7 gene subfamily members in Mastacembelus armatus (Synbranchiformes: Mastacembelidae).
    Han C; Li Q; Liu J; Hao Z; Huang J; Zhang Y
    Dev Comp Immunol; 2019 Jun; 95():77-88. PubMed ID: 30742850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.
    Tschirren B; Råberg L; Westerdahl H
    J Evol Biol; 2011 Jun; 24(6):1232-40. PubMed ID: 21418116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat.
    Herberger AL; Loretz CA
    Comp Biochem Physiol Part D Genomics Proteomics; 2013 Mar; 8(1):86-94. PubMed ID: 23321268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic evidence of gene duplication and adaptive evolution of Toll like receptors (TLR2 and TLR4) in reptiles.
    Shang S; Zhong H; Wu X; Wei Q; Zhang H; Chen J; Chen Y; Tang X; Zhang H
    Int J Biol Macromol; 2018 Apr; 109():698-703. PubMed ID: 29292152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterization of equine Toll-like receptor 9.
    Zhang YW; Davis EG; Blecha F; Wilkerson MJ
    Vet Immunol Immunopathol; 2008 Aug; 124(3-4):209-19. PubMed ID: 18462806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Miiuy croaker transferrin gene and evidence for positive selection events reveal different evolutionary patterns.
    Sun Y; Zhu Z; Wang R; Sun Y; Xu T
    PLoS One; 2012; 7(9):e43936. PubMed ID: 22957037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular characterization of a Toll-like receptor 22 homologue in large yellow croaker (Pseudosciaena crocea) and promoter activity analysis of its 5'-flanking sequence.
    Xiao X; Qin Q; Chen X
    Fish Shellfish Immunol; 2011 Jan; 30(1):224-33. PubMed ID: 20974258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish.
    Lee FF; Chuang HC; Chen NY; Nagarajan G; Chiou PP
    PLoS One; 2015; 10(5):e0126388. PubMed ID: 25955250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of snake venom disintegrins by positive Darwinian selection.
    Juárez P; Comas I; González-Candelas F; Calvete JJ
    Mol Biol Evol; 2008 Nov; 25(11):2391-407. PubMed ID: 18701431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides.
    Brownlie R; Zhu J; Allan B; Mutwiri GK; Babiuk LA; Potter A; Griebel P
    Mol Immunol; 2009 Sep; 46(15):3163-70. PubMed ID: 19573927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.