BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23680844)

  • 41. The first evidence of positive selection in peptidoglycan recognition protein (PGRP) genes of Crassostrea gigas.
    Zhang Y; Yu Z
    Fish Shellfish Immunol; 2013 May; 34(5):1352-5. PubMed ID: 23416224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The evolution of bat nucleic acid-sensing Toll-like receptors.
    Escalera-Zamudio M; Zepeda-Mendoza ML; Loza-Rubio E; Rojas-Anaya E; Méndez-Ojeda ML; Arias CF; Greenwood AD
    Mol Ecol; 2015 Dec; 24(23):5899-909. PubMed ID: 26503258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors.
    Wang J; Zhang Z; Liu J; Zhao J; Yin D
    Sci Rep; 2016 May; 6():26705. PubMed ID: 27216145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular characterization and functional analysis of Toll-like receptor 3 gene in orange-spotted grouper (Epinephelus coioides).
    Lin K; Ge H; Lin Q; Wu J; He L; Fang Q; Zhou C; Sun M; Huang Z
    Gene; 2013 Sep; 527(1):174-82. PubMed ID: 23792060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Maximum likelihood analysis of mammalian p53 indicates the presence of positively selected sites and higher tumorigenic mutations in purifying sites.
    Khan MM; Rydén AM; Chowdhury MS; Hasan MA; Kazi JU
    Gene; 2011 Sep; 483(1-2):29-35. PubMed ID: 21640173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of NLR-A subfamily members in miiuy croaker and comparative genomics revealed NLRX1 underwent duplication and lose in actinopterygii.
    Li J; Kong L; Gao Y; Wu C; Xu T
    Fish Shellfish Immunol; 2015 Nov; 47(1):397-406. PubMed ID: 26381931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lineage-specific differences in evolutionary mode in a salamander courtship pheromone.
    Palmer CA; Watts RA; Gregg RG; McCall MA; Houck LD; Highton R; Arnold SJ
    Mol Biol Evol; 2005 Nov; 22(11):2243-56. PubMed ID: 16033988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Positive selection pressure within teleost Toll-like receptors tlr21 and tlr22 subfamilies and their response to temperature stress and microbial components in zebrafish.
    Sundaram AY; Consuegra S; Kiron V; Fernandes JM
    Mol Biol Rep; 2012 Sep; 39(9):8965-75. PubMed ID: 22729906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes.
    Shu C; Wang S; Xu T
    Dev Comp Immunol; 2015 May; 50(1):19-25. PubMed ID: 25596146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus).
    Larmuseau MH; Raeymaekers JA; Ruddick KG; Van Houdt JK; Volckaert FA
    Mol Ecol; 2009 Oct; 18(20):4227-39. PubMed ID: 19732334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural selection in the TLR-related genes in the course of primate evolution.
    Nakajima T; Ohtani H; Satta Y; Uno Y; Akari H; Ishida T; Kimura A
    Immunogenetics; 2008 Dec; 60(12):727-35. PubMed ID: 18810425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymorphism of Toll-like receptor 9 (TLR9) gene in sheep.
    Zhou H; Hickford JG
    Vet Immunol Immunopathol; 2008 Jan; 121(1-2):140-3. PubMed ID: 17706295
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of vertebrate genes related to prion and Shadoo proteins--clues from comparative genomic analysis.
    Premzl M; Gready JE; Jermiin LS; Simonic T; Marshall Graves JA
    Mol Biol Evol; 2004 Dec; 21(12):2210-31. PubMed ID: 15342797
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular cloning and characterization of Toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus.
    Takano T; Kondo H; Hirono I; Endo M; Saito-Taki T; Aoki T
    Mol Immunol; 2007 Mar; 44(8):1845-53. PubMed ID: 17118454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural characterization and evolutionary analysis of fish-specific TLR27.
    Wang J; Zhang Z; Liu J; Li F; Chang F; Fu H; Zhao J; Yin D
    Fish Shellfish Immunol; 2015 Aug; 45(2):940-5. PubMed ID: 26093204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ND6 gene "lost" and found: evolution of mitochondrial gene rearrangement in Antarctic notothenioids.
    Zhuang X; Cheng CH
    Mol Biol Evol; 2010 Jun; 27(6):1391-403. PubMed ID: 20106908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates.
    Bagheri M; Zahmatkesh A
    Int Rev Immunol; 2018; 37(5):217-228. PubMed ID: 30207813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolutionary analysis of the contact system indicates that kininogen evolved adaptively in mammals and in human populations.
    Cagliani R; Forni D; Riva S; Pozzoli U; Colleoni M; Bresolin N; Clerici M; Sironi M
    Mol Biol Evol; 2013 Jun; 30(6):1397-408. PubMed ID: 23505046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural basis for species-specific activation of mouse Toll-like receptor 9.
    Ishida H; Ohto U; Shibata T; Miyake K; Shimizu T
    FEBS Lett; 2018 Aug; 592(15):2636-2646. PubMed ID: 29961984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.