These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23681124)

  • 21. Specific identification and quantification of circular RNAs from sequencing data.
    Cheng J; Metge F; Dieterich C
    Bioinformatics; 2016 Apr; 32(7):1094-6. PubMed ID: 26556385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. VarSim: a high-fidelity simulation and validation framework for high-throughput genome sequencing with cancer applications.
    Mu JC; Mohiyuddin M; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 May; 31(9):1469-71. PubMed ID: 25524895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RVD2: an ultra-sensitive variant detection model for low-depth heterogeneous next-generation sequencing data.
    He Y; Zhang F; Flaherty P
    Bioinformatics; 2015 Sep; 31(17):2785-93. PubMed ID: 25931517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NextGenMap: fast and accurate read mapping in highly polymorphic genomes.
    Sedlazeck FJ; Rescheneder P; von Haeseler A
    Bioinformatics; 2013 Nov; 29(21):2790-1. PubMed ID: 23975764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. AIRVF: a filtering toolbox for precise variant calling in Ion Torrent sequencing.
    Shin S; Lee H; Son H; Paik S; Kim S
    Bioinformatics; 2018 Apr; 34(7):1232-1234. PubMed ID: 29126106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data.
    Wang W; Wang P; Xu F; Luo R; Wong MP; Lam TW; Wang J
    Bioinformatics; 2014 Sep; 30(17):2498-500. PubMed ID: 24833803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reliably Detecting Clinically Important Variants Requires Both Combined Variant Calls and Optimized Filtering Strategies.
    Field MA; Cho V; Andrews TD; Goodnow CC
    PLoS One; 2015; 10(11):e0143199. PubMed ID: 26600436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. dv-trio: a family-based variant calling pipeline using DeepVariant.
    Ip EKK; Hadinata C; Ho JWK; Giannoulatou E
    Bioinformatics; 2020 Jun; 36(11):3549-3551. PubMed ID: 32315409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers.
    Xu C; Gu X; Padmanabhan R; Wu Z; Peng Q; DiCarlo J; Wang Y
    Bioinformatics; 2019 Apr; 35(8):1299-1309. PubMed ID: 30192920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid computational strategy to address WGS variant analysis in >5000 samples.
    Huang Z; Rustagi N; Veeraraghavan N; Carroll A; Gibbs R; Boerwinkle E; Venkata MG; Yu F
    BMC Bioinformatics; 2016 Sep; 17(1):361. PubMed ID: 27612449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical probabilistic models for multiple gene/variant associations based on next-generation sequencing data.
    Vavoulis DV; Taylor JC; Schuh A
    Bioinformatics; 2017 Oct; 33(19):3058-3064. PubMed ID: 28575251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
    Mohiyuddin M; Mu JC; Li J; Bani Asadi N; Gerstein MB; Abyzov A; Wong WH; Lam HY
    Bioinformatics; 2015 Aug; 31(16):2741-4. PubMed ID: 25861968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aligning to the sample-specific reference sequence to optimize the accuracy of next-generation sequencing analysis for hepatitis B virus.
    Liu WC; Lin CP; Cheng CP; Ho CH; Lan KL; Cheng JH; Yen CJ; Cheng PN; Wu IC; Li IC; Chang BC; Tseng VS; Chiu YC; Chang TT
    Hepatol Int; 2016 Jan; 10(1):147-57. PubMed ID: 26208819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From Wet-Lab to Variations: Concordance and Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing.
    Laurie S; Fernandez-Callejo M; Marco-Sola S; Trotta JR; Camps J; Chacón A; Espinosa A; Gut M; Gut I; Heath S; Beltran S
    Hum Mutat; 2016 Dec; 37(12):1263-1271. PubMed ID: 27604516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LAMSA: fast split read alignment with long approximate matches.
    Liu B; Gao Y; Wang Y
    Bioinformatics; 2017 Jan; 33(2):192-201. PubMed ID: 27667793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data.
    Cai L; Yuan W; Zhang Z; He L; Chou KC
    Sci Rep; 2016 Nov; 6():36540. PubMed ID: 27874022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BlindCall: ultra-fast base-calling of high-throughput sequencing data by blind deconvolution.
    Ye C; Hsiao C; Corrada Bravo H
    Bioinformatics; 2014 May; 30(9):1214-9. PubMed ID: 24413520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Halvade-RNA: Parallel variant calling from transcriptomic data using MapReduce.
    Decap D; Reumers J; Herzeel C; Costanza P; Fostier J
    PLoS One; 2017; 12(3):e0174575. PubMed ID: 28358893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.