These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23681296)

  • 1. The influence of motor cortical stimulus intensity on the relaxation rate of human lower limb muscles.
    McNeil CJ; Bredius MS; Molenaar JP; Gandevia SC
    Exp Brain Res; 2013 Jul; 228(2):235-42. PubMed ID: 23681296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of muscle length on transcranial magnetic stimulation-induced relaxation rate in the plantar flexors.
    Yacyshyn AF; Nettleton J; Power GA; Jakobi JM; McNeil CJ
    Physiol Rep; 2017 Sep; 5(18):. PubMed ID: 28947595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of voluntary activation of the back muscles using transcranial magnetic stimulation.
    Lagan J; Lang P; Strutton PH
    Clin Neurophysiol; 2008 Dec; 119(12):2839-45. PubMed ID: 18976953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supraspinal fatigue impedes recovery from a low-intensity sustained contraction in old adults.
    Yoon T; Schlinder-Delap B; Keller ML; Hunter SK
    J Appl Physiol (1985); 2012 Mar; 112(5):849-58. PubMed ID: 22174405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility and robustness of motor cortical stimulation to assess muscle relaxation kinetics.
    Molenaar JP; van Zandvoort E; van Engelen BG; Voermans NC; Doorduin J
    Physiol Rep; 2022 Oct; 10(20):e15491. PubMed ID: 36267028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex differences with aging in the fatigability of dynamic contractions.
    Yoon T; Doyel R; Widule C; Hunter SK
    Exp Gerontol; 2015 Oct; 70():1-10. PubMed ID: 26159162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary activation does not differ when using two different methods to determine transcranial magnetic stimulator output.
    Bruce CD; Magnuson JR; McNeil CJ
    J Neurophysiol; 2023 Oct; 130(4):925-930. PubMed ID: 37671448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles.
    Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL
    J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aging and sex on voluntary activation and peak relaxation rate of human elbow flexors studied with motor cortical stimulation.
    Molenaar JP; McNeil CJ; Bredius MS; Gandevia SC
    Age (Dordr); 2013 Aug; 35(4):1327-37. PubMed ID: 22653296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle fiber type and TMS-induced muscle relaxation in unfatigued and fatigued knee-extensor muscles.
    Barbi C; Temesi J; Giuriato G; Laginestra FG; Martignon C; Moro T; Schena F; Venturelli M; Vernillo G
    Am J Physiol Regul Integr Comp Physiol; 2024 May; 326(5):R438-R447. PubMed ID: 38525536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris.
    Temesi J; Gruet M; Rupp T; Verges S; Millet GY
    J Neuroeng Rehabil; 2014 Mar; 11():40. PubMed ID: 24655366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of motor cortex excitability during muscle relaxation in motor learning.
    Sugawara K; Tanabe S; Suzuki T; Saitoh K; Higashi T
    Behav Brain Res; 2016 Jan; 296():78-84. PubMed ID: 26341320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of relaxation properties of knee-extensor muscles induced by transcranial magnetic stimulation.
    Vernillo G; Barbi C; Temesi J; Giuriato G; Giuseppe Laginestra F; Martignon C; Schena F; Venturelli M
    Neurosci Lett; 2022 Jun; 782():136694. PubMed ID: 35609711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
    Hoffman BW; Oya T; Carroll TJ; Cresswell AG
    J Appl Physiol (1985); 2009 Jul; 107(1):112-20. PubMed ID: 19443741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions.
    Hunter SK; Todd G; Butler JE; Gandevia SC; Taylor JL
    J Appl Physiol (1985); 2008 Oct; 105(4):1199-209. PubMed ID: 18687979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation.
    Sidhu SK; Bentley DJ; Carroll TJ
    Muscle Nerve; 2009 Feb; 39(2):186-96. PubMed ID: 19034956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigability and recovery of arm muscles with advanced age for dynamic and isometric contractions.
    Yoon T; Schlinder-Delap B; Hunter SK
    Exp Gerontol; 2013 Feb; 48(2):259-68. PubMed ID: 23103238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulus strength related effect of transcranial magnetic stimulation on maximal voluntary contraction force of human quadriceps femoris muscle.
    Urbach D; Awiszus F
    Exp Brain Res; 2002 Jan; 142(1):25-31. PubMed ID: 11797081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.