BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 23681750)

  • 1. Development of somites, muscle, and skeleton is independent of signals from the Wolffian duct.
    Krück S; Nesemann J; Scaal M
    Dev Dyn; 2013 Aug; 242(8):941-8. PubMed ID: 23681750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of paraxis expression and somite formation by ectoderm- and neural tube-derived signals.
    Šošić D; Brand-Saberi B; Schmidt C; Christ B; Olson EN
    Dev Biol; 1997 May; 185(2):229-43. PubMed ID: 9187085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Early stages of myogenesis as seen through the action of the myf-5 gene].
    Buckingham M
    C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early stages of chick somite development.
    Christ B; Ordahl CP
    Anat Embryol (Berl); 1995 May; 191(5):381-96. PubMed ID: 7625610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmentalization of the somite and myogenesis in chick embryos are influenced by wnt expression.
    Wagner J; Schmidt C; Nikowits W; Christ B
    Dev Biol; 2000 Dec; 228(1):86-94. PubMed ID: 11087628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and differentiation of avian somite derivatives.
    Christ B; Scaal M
    Adv Exp Med Biol; 2008; 638():1-41. PubMed ID: 21038768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel waves of inductive signaling and mesenchyme maturation regulate differentiation of the chick mesonephros.
    Soueid-Baumgarten S; Yelin R; Davila EK; Schultheiss TM
    Dev Biol; 2014 Jan; 385(1):122-35. PubMed ID: 24091141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and cellular biology of avian somite development.
    Stockdale FE; Nikovits W; Christ B
    Dev Dyn; 2000 Nov; 219(3):304-21. PubMed ID: 11066088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of the temporal and spatial Uncx4.1 expression in the paraxial mesoderm of avian embryos.
    Schrägle J; Huang R; Christ B; Pröls F
    Anat Embryol (Berl); 2004 Jul; 208(4):323-32. PubMed ID: 15235909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halves of epithelial somites and segmental plate show distinct muscle differentiation behavior in vitro compared to entire somites and segmental plate.
    Gamel AJ; Brand-Saberi B; Christ B
    Dev Biol; 1995 Dec; 172(2):625-39. PubMed ID: 8612977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm.
    Mauch TJ; Yang G; Wright M; Smith D; Schoenwolf GC
    Dev Biol; 2000 Apr; 220(1):62-75. PubMed ID: 10720431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The epaxial-hypaxial subdivision of the avian somite.
    Cheng L; Alvares LE; Ahmed MU; El-Hanfy AS; Dietrich S
    Dev Biol; 2004 Oct; 274(2):348-69. PubMed ID: 15385164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of chicken Paraxis: a regulator of paraxial mesoderm development and somite formation.
    Barnes GL; Alexander PG; Hsu CW; Mariani BD; Tuan RS
    Dev Biol; 1997 Sep; 189(1):95-111. PubMed ID: 9281340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites.
    Borycki AG; Strunk KE; Savary R; Emerson CP
    Dev Biol; 1997 May; 185(2):185-200. PubMed ID: 9187082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The eventful somite: patterning, fate determination and cell division in the somite.
    Yusuf F; Brand-Saberi B
    Anat Embryol (Berl); 2006 Dec; 211 Suppl 1():21-30. PubMed ID: 17024302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological analysis of the role of the neural tube and notochord in the development of somites.
    Hirano S; Hirako R; Kajita N; Norita M
    Anat Embryol (Berl); 1995 Nov; 192(5):445-57. PubMed ID: 8546336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wnt 6 regulates the epithelialisation process of the segmental plate mesoderm leading to somite formation.
    Schmidt C; Stoeckelhuber M; McKinnell I; Putz R; Christ B; Patel K
    Dev Biol; 2004 Jul; 271(1):198-209. PubMed ID: 15196961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis.
    Amthor H; Connolly D; Patel K; Brand-Saberi B; Wilkinson DG; Cooke J; Christ B
    Dev Biol; 1996 Sep; 178(2):343-62. PubMed ID: 8812134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of the paraxis gene for somite formation and musculoskeletal patterning.
    Burgess R; Rawls A; Brown D; Bradley A; Olson EN
    Nature; 1996 Dec; 384(6609):570-3. PubMed ID: 8955271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.