These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 23681772)
1. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization. Hu Y; Nan Z; Su J; Wang N Environ Sci Pollut Res Int; 2013 Oct; 20(10):7194-203. PubMed ID: 23681772 [TBL] [Abstract][Full Text] [Related]
2. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium. Hu Y; Nan Z; Jin C; Wang N; Luo H Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230 [TBL] [Abstract][Full Text] [Related]
3. Effects of urban wastewater application on growth, biomass, nutrition, and heavy-metal accumulation of Salehi A; Zalesny RS; Calagari M Int J Phytoremediation; 2023; 25(10):1371-1383. PubMed ID: 36597801 [TBL] [Abstract][Full Text] [Related]
4. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil. Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720 [TBL] [Abstract][Full Text] [Related]
5. Growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments. Pilipović A; Zalesny RS; Rončević S; Nikolić N; Orlović S; Beljin J; Katanić M J Environ Manage; 2019 Jun; 239():352-365. PubMed ID: 30921754 [TBL] [Abstract][Full Text] [Related]
6. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions. Jalali M; Imanifard A Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349 [TBL] [Abstract][Full Text] [Related]
7. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Wang X; Jia Y Environ Sci Pollut Res Int; 2010 Aug; 17(7):1331-8. PubMed ID: 20340050 [TBL] [Abstract][Full Text] [Related]
8. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
9. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
10. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
11. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Zárubová P; Hejcman M; Vondráčková S; Mrnka L; Száková J; Tlustoš P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18801-13. PubMed ID: 26201656 [TBL] [Abstract][Full Text] [Related]
12. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Rana V; Maiti SK Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment. Wang Y; Li F; Song J; Xiao R; Luo L; Yang Z; Chai L Environ Geochem Health; 2018 Oct; 40(5):2143-2153. PubMed ID: 29651760 [TBL] [Abstract][Full Text] [Related]
14. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Evangelou MW; Robinson BH; Günthardt-Goerg MS; Schulin R Int J Phytoremediation; 2013; 15(1):77-90. PubMed ID: 23487987 [TBL] [Abstract][Full Text] [Related]
15. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499 [TBL] [Abstract][Full Text] [Related]
16. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
17. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Pescatore A; Grassi C; Rizzo AM; Orlandini S; Napoli M Chemosphere; 2022 Jan; 287(Pt 1):131986. PubMed ID: 34481173 [TBL] [Abstract][Full Text] [Related]
18. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
19. Phytoextraction of risk elements by willow and poplar trees. Kacálková L; Tlustoš P; Száková J Int J Phytoremediation; 2015; 17(1-6):414-21. PubMed ID: 25495931 [TBL] [Abstract][Full Text] [Related]
20. Long-term effects of phytoextraction by a poplar clone on the concentration, fractionation, and transportation of heavy metals in mine tailings. Suo Y; Tang N; Li H; Corti G; Jiang L; Huang Z; Zhang Z; Huang J; Wu Z; Feng C; Zhang X Environ Sci Pollut Res Int; 2021 Sep; 28(34):47528-47539. PubMed ID: 33895954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]