These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23682198)

  • 1. Synthesis, Redox Properties, and Conformational Analysis of Vicinal Disulfide Ring Mimics.
    Ruggles EL; Deker PB; Hondal RJ
    Tetrahedron; 2009 Feb; 65(7):1257-1267. PubMed ID: 23682198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Properties of Disulfide-Bond Containing Eight-Membered Rings.
    Ruggles EL; Hondal RJ
    Tetrahedron Lett; 2006 Jun; 47(25):4281-4284. PubMed ID: 23828656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analysis of oxidized peptide fragments of the C-terminal redox center in thioredoxin reductases by NMR spectroscopy.
    Ruggles EL; Deker PB; Hondal RJ
    J Pept Sci; 2014 May; 20(5):349-60. PubMed ID: 24599608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vicinal disulfide turns.
    Carugo O; Cemazar M; Zahariev S; Hudáky I; Gáspári Z; Perczel A; Pongor S
    Protein Eng; 2003 Sep; 16(9):637-9. PubMed ID: 14560048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum.
    Snider GW; Dustin CM; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of peptide substrates for mammalian thioredoxin reductase.
    Flemer S; Lacey BM; Hondal RJ
    J Pept Sci; 2008 May; 14(5):637-47. PubMed ID: 18035847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-induced transition in conformations of vicinal cysteine disulfides in proteins.
    Reddy KKA; Jayashree M; Govindu PCV; Gowd KH
    Proteins; 2021 Jun; 89(6):599-613. PubMed ID: 33378101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational change due to replacement of disulfide with selenosulfide and diselenide in dipeptide vicinal cysteine loop.
    Reddy KKA; Sahoo DK; Moi S; Gowd KH
    Comput Biol Chem; 2022 Apr; 97():107635. PubMed ID: 35091368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete amide
    Cheng Y; Hyodo T; Yamaguchi K; Ohwada T; Otani Y
    Chem Commun (Camb); 2024 Jun; 60(48):6158-6161. PubMed ID: 38804552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do vicinal disulfide bridges mediate functionally important redox transformations in proteins?
    de Araujo AD; Herzig V; Windley MJ; Dziemborowicz S; Mobli M; Nicholson GM; Alewood PF; King GF
    Antioxid Redox Signal; 2013 Dec; 19(16):1976-80. PubMed ID: 23646911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjacent cysteine residues as a redox switch.
    Park C; Raines RT
    Protein Eng; 2001 Nov; 14(11):939-42. PubMed ID: 11742114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly.
    Mayadas TN; Wagner DD
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3531-5. PubMed ID: 1565649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the reactivity of an artificial dithiol-disulfide pair through modification of the electrostatic milieu.
    Hansen RE; Østergaard H; Winther JR
    Biochemistry; 2005 Apr; 44(15):5899-906. PubMed ID: 15823049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative folding intermediates with nonnative disulfide bridges between adjacent cysteine residues.
    Cemazar M; Zahariev S; Lopez JJ; Carugo O; Jones JA; Hore PJ; Pongor S
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5754-9. PubMed ID: 12724517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of glutathione in evolution of thiol-based redox signaling sites in proteins.
    Mohanasundaram KA; Haworth NL; Grover MP; Crowley TM; Goscinski A; Wouters MA
    Front Pharmacol; 2015; 6():1. PubMed ID: 25805991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-regulated conformational changes in an SH3 domain.
    Zimmermann J; Kühne R; Sylvester M; Freund C
    Biochemistry; 2007 Jun; 46(23):6971-7. PubMed ID: 17511475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-active bis-cysteinyl peptides. II. Comparative study on the sequence-dependent tendency for disulfide loop formation.
    Siedler F; Quarzago D; Rudolph-Böhner S; Moroder L
    Biopolymers; 1994 Nov; 34(11):1563-72. PubMed ID: 7827267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the disulfide conformation determines the disulfide/thiol redox potential.
    Roos G; Fonseca Guerra C; Bickelhaupt FM
    J Biomol Struct Dyn; 2015; 33(1):93-103. PubMed ID: 24256142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.