BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23682429)

  • 1. Structural analysis of flagellar axonemes from inner arm dynein knockdown strains of Trypanosoma brucei.
    Zukas R; Chang AJ; Rice M; Springer AL
    Biocell; 2012 Dec; 36(3):133-41. PubMed ID: 23682429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei.
    Springer AL; Bruhn DF; Kinzel KW; Rosenthal NF; Zukas R; Klingbeil MM
    Mol Biochem Parasitol; 2011 Jan; 175(1):68-75. PubMed ID: 20888370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment.
    Wilson CS; Chang AJ; Greene R; Machado S; Parsons MW; Takats TA; Zambetti LJ; Springer AL
    PLoS One; 2015; 10(11):e0139579. PubMed ID: 26555902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of dynein light chain 1 identifies viable motility mutants in bloodstream-form Trypanosoma brucei.
    Ralston KS; Kisalu NK; Hill KL
    Eukaryot Cell; 2011 Jul; 10(7):884-94. PubMed ID: 21378260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional studies of an evolutionarily conserved, cytochrome b5 domain protein reveal a specific role in axonemal organisation and the general phenomenon of post-division axonemal growth in trypanosomes.
    Farr H; Gull K
    Cell Motil Cytoskeleton; 2009 Jan; 66(1):24-35. PubMed ID: 19009637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analyses of an axonemal inner-arm dynein complex in the bloodstream form of Trypanosoma brucei uncover its essential role in cytokinesis initiation.
    Zhang X; Hu H; Lun ZR; Li Z
    Mol Microbiol; 2019 Dec; 112(6):1718-1730. PubMed ID: 31515877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel role of centrin in flagellar motility: stabilizing an inner-arm dynein motor in the flagellar axoneme.
    Li Z
    Microb Cell; 2014 Aug; 1(8):267-269. PubMed ID: 25839030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.
    Kikushima K
    Cell Motil Cytoskeleton; 2009 May; 66(5):272-80. PubMed ID: 19347929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagellar motility contributes to cytokinesis in Trypanosoma brucei and is modulated by an evolutionarily conserved dynein regulatory system.
    Ralston KS; Lerner AG; Diener DR; Hill KL
    Eukaryot Cell; 2006 Apr; 5(4):696-711. PubMed ID: 16607017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional binding of inner-arm dyneins with demembranated flagella of Chlamydomonas mutants.
    Yamamoto R; Yagi T; Kamiya R
    Cell Motil Cytoskeleton; 2006 May; 63(5):258-65. PubMed ID: 16518818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrin3 in trypanosomes maintains the stability of a flagellar inner-arm dynein for cell motility.
    Wei Y; Hu H; Lun ZR; Li Z
    Nat Commun; 2014 Jun; 5():4060. PubMed ID: 24892844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flagellar adhesion in Trypanosoma brucei relies on interactions between different skeletal structures in the flagellum and cell body.
    Rotureau B; Blisnick T; Subota I; Julkowska D; Cayet N; Perrot S; Bastin P
    J Cell Sci; 2014 Jan; 127(Pt 1):204-15. PubMed ID: 24163437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena.
    Liu S; Hard R; Rankin S; Hennessey T; Pennock DG
    Cell Motil Cytoskeleton; 2004 Nov; 59(3):201-14. PubMed ID: 15468164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation.
    Wirschell M; Hendrickson T; Sale WS
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions.
    Blisnick T; Buisson J; Absalon S; Marie A; Cayet N; Bastin P
    Mol Biol Cell; 2014 Sep; 25(17):2620-33. PubMed ID: 24989795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The IC138 and IC140 intermediate chains of the I1 axonemal dynein complex bind directly to tubulin.
    Hendrickson TW; Goss JL; Seaton CA; Rohrs HW
    Biochim Biophys Acta; 2013 Dec; 1833(12):3265-3271. PubMed ID: 24080090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme.
    Maheshwari A; Ishikawa T
    J Struct Biol; 2012 Aug; 179(2):235-41. PubMed ID: 22569523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
    Baron DM; Ralston KS; Kabututu ZP; Hill KL
    J Cell Sci; 2007 Feb; 120(Pt 3):478-91. PubMed ID: 17227795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity.
    Yang P; Sale WS
    J Biol Chem; 2000 Jun; 275(25):18905-12. PubMed ID: 10858448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.