These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23682638)

  • 21. A photoacoustic technique for depth-resolved in situ monitoring of biofilms.
    Schmid T; Panne U; Haisch C; Hausner M; Niessner R
    Environ Sci Technol; 2002 Oct; 36(19):4135-41. PubMed ID: 12380086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection and monitoring of biofilm formation in water treatment systems by quartz crystal microbalance sensors.
    Sprung C; Wählisch D; Hüttl R; Seidel J; Meyer A; Wolf G
    Water Sci Technol; 2009; 59(3):543-8. PubMed ID: 19214009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms.
    Hijnen WA; Castillo C; Brouwer-Hanzens AH; Harmsen DJ; Cornelissen ER; van der Kooij D
    Water Res; 2012 Dec; 46(19):6369-81. PubMed ID: 23021522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.
    Farhat NM; Staal M; Siddiqui A; Borisov SM; Bucs SS; Vrouwenvelder JS
    Water Res; 2015 Oct; 83():10-20. PubMed ID: 26117369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements.
    Reipa V; Almeida J; Cole KD
    J Microbiol Methods; 2006 Sep; 66(3):449-59. PubMed ID: 16580080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.
    Halder P; Nasabi M; Lopez FJ; Jayasuriya N; Bhattacharya S; Deighton M; Mitchell A; Bhuiyan MA
    Biofouling; 2013; 29(6):697-713. PubMed ID: 23789960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An automated system for biocide testing on biofilms.
    Ludensky ML
    J Ind Microbiol Biotechnol; 1998 Feb; 20(2):109-15. PubMed ID: 11536869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofouling and biocorrosion in industrial water systems.
    Coetser SE; Cloete TE
    Crit Rev Microbiol; 2005; 31(4):213-32. PubMed ID: 16417202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial Fouling in a Water Treatment Plant and Its Control Using Biocides.
    S Rao T; Kumar R; Balamurugan P; Vithal GK
    Biocontrol Sci; 2017; 22(2):105-119. PubMed ID: 28659553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transient response of microbial communities in a water well field to application of an impressed current.
    Medihala PG; Lawrence JR; Swerhone GD; Korber DR
    Water Res; 2013 Feb; 47(2):672-82. PubMed ID: 23206499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monitoring cleaning cycles of fouled ducts using ultrasonic coda wave interferometry (CWI).
    Chen B; Callens D; Campistron P; Moulin E; Debreyne P; Delaplace G
    Ultrasonics; 2019 Jul; 96():253-260. PubMed ID: 30745025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel scenario for biofouling control of spiral wound membrane systems.
    Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC
    Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of environmental biofilms: Industrial components and its remediation.
    Vishwakarma V
    J Basic Microbiol; 2020 Mar; 60(3):198-206. PubMed ID: 31856349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and field application of a UV-LED based optical fiber biofilm sensor.
    Fischer M; Wahl M; Friedrichs G
    Biosens Bioelectron; 2012 Mar; 33(1):172-8. PubMed ID: 22265878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.
    Bereschenko LA; Prummel H; Euverink GJ; Stams AJ; van Loosdrecht MC
    Water Res; 2011 Jan; 45(2):405-16. PubMed ID: 21111441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated multivariate analysis of multi-sensor data submitted online: Real-time environmental monitoring.
    Eide I; Westad F
    PLoS One; 2018; 13(1):e0189443. PubMed ID: 29329297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and on-site formation of biofilms in paper machine water flow.
    Mattila K; Weber A; Salkinoja-Salonen MS
    J Ind Microbiol Biotechnol; 2002 May; 28(5):268-79. PubMed ID: 11986931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidation and control of biofilm formation processes in water treatment and distribution using the Unified Biofilm Approach.
    van der Kooij D; Vrouwenvelder JS; Veenendaal HR
    Water Sci Technol; 2003; 47(5):83-90. PubMed ID: 12701911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pilot-scale cooling tower to evaluate corrosion, scaling, and biofouling control strategies for cooling system makeup water.
    Chien SH; Hsieh MK; Li H; Monnell J; Dzombak D; Vidic R
    Rev Sci Instrum; 2012 Feb; 83(2):024101. PubMed ID: 22380105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.