These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23682638)

  • 41. Ultrasonic monitoring of early-stage biofilm growth on polymeric surfaces.
    Kujundzic E; Fonseca AC; Evans EA; Peterson M; Greenberg AR; Hernandez M
    J Microbiol Methods; 2007 Mar; 68(3):458-67. PubMed ID: 17141898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm Area, Sweden.
    Långmark J; Storey MV; Ashbolt NJ; Stenström TA
    Water Sci Technol; 2005; 52(8):181-9. PubMed ID: 16312966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The control of biofilm formation by hydrodynamics of purified water in industrial distribution system.
    Florjanič M; Kristl J
    Int J Pharm; 2011 Feb; 405(1-2):16-22. PubMed ID: 21129467
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of the biofouling and cleaning efficiency of nanofiltration membranes.
    Houari A; Seyer D; Couquard F; Kecili K; Democrate C; Heim V; Di Martino P
    Biofouling; 2010 Jan; 26(1):15-21. PubMed ID: 20390552
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofouling: lessons from nature.
    Bixler GD; Bhushan B
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2381-417. PubMed ID: 22509063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications.
    Liu Y; Leng C; Chisholm B; Stafslien S; Majumdar P; Chen Z
    Langmuir; 2013 Mar; 29(9):2897-905. PubMed ID: 23394402
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: a review.
    Upadhyayula VK; Gadhamshetty V
    Biotechnol Adv; 2010; 28(6):802-16. PubMed ID: 20599491
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploiting a new electrochemical sensor for biofilm monitoring and water treatment optimization.
    Pavanello G; Faimali M; Pittore M; Mollica A; Mollica A; Mollica A
    Water Res; 2011 Feb; 45(4):1651-8. PubMed ID: 21186042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics and composition of fouling caused by pig slurry in a tubular heat exchanger--recommended cleaning systems.
    Cunault C; Coquinot Y; Burton CH; Picard S; Pourcher AM
    J Environ Manage; 2013 Mar; 117():17-31. PubMed ID: 23334456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Living on the edge: biofilms developing in oscillating environmental conditions.
    Dobretsov S; Abed RMM; Muthukrishnan T; Sathe P; Al-Naamani L; Queste BY; Piontkovski S
    Biofouling; 2018 Oct; 34(9):1064-1077. PubMed ID: 30621450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of marine biofouling on gas sensor membrane materials.
    Smith MJ; Kerr A; Cowling MJ
    J Environ Monit; 2007 Dec; 9(12):1378-86. PubMed ID: 18049777
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent.
    Eguía E; Trueba A; Girón A; Río-Calonge B; Otero F; Bielva C
    Biofouling; 2007; 23(3-4):231-47. PubMed ID: 17653933
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical method for long-term and large-scale monitoring of spatial biofilm development.
    Milferstedt K; Pons MN; Morgenroth E
    Biotechnol Bioeng; 2006 Jul; 94(4):773-82. PubMed ID: 16477662
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface analysis of pilot distribution system pipe autopsies: The relationship of organic and inorganic deposits to input water quality.
    Fabris R; Denman J; Braun K; Ho L; Drikas M
    Water Res; 2015 Dec; 87():202-10. PubMed ID: 26414297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial biofilms and biofilm reactors.
    Peyton BM; Characklis WG
    Bioprocess Technol; 1995; 20():187-231. PubMed ID: 7765635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.
    Cho Y; Sundaram HS; Finlay JA; Dimitriou MD; Callow ME; Callow JA; Kramer EJ; Ober CK
    Biomacromolecules; 2012 Jun; 13(6):1864-74. PubMed ID: 22530840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mini-review: Inhibition of biofouling by marine microorganisms.
    Dobretsov S; Abed RM; Teplitski M
    Biofouling; 2013; 29(4):423-41. PubMed ID: 23574279
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial community structure and biomass in developing drinking water biofilms.
    Keinänen MM; Martikainen PJ; Kontro MH
    Can J Microbiol; 2004 Mar; 50(3):183-91. PubMed ID: 15105885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biofilm thickness measurement using an ultrasound method in a liquid phase.
    Maurício R; Dias CJ; Jubilado N; Santana F
    Environ Monit Assess; 2013 Oct; 185(10):8125-33. PubMed ID: 23494195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.