These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23682664)

  • 1. Age, sex, and performance influence the visuospatial working memory network in childhood.
    Spencer-Smith M; Ritter BC; Mürner-Lavanchy I; El-Koussy M; Steinlin M; Everts R
    Dev Neuropsychol; 2013; 38(4):236-55. PubMed ID: 23682664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood.
    Klingberg T; Forssberg H; Westerberg H
    J Cogn Neurosci; 2002 Jan; 14(1):1-10. PubMed ID: 11798382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study.
    Yamanaka K; Yamagata B; Tomioka H; Kawasaki S; Mimura M
    Cereb Cortex; 2010 May; 20(5):1037-45. PubMed ID: 19684247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ; Raemaekers M; van Wezel RJ; Oleksiak A; Postma A
    Brain Res; 2009 Nov; 1297():70-9. PubMed ID: 19651111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a superior frontal-intraparietal network for visuo-spatial working memory.
    Klingberg T
    Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a solution for performance related confounds: frontal, striatal and parietal activation during a continuous spatiotemporal working memory manipulation task.
    Van Hecke J; Gladwin TE; Coremans J; Destoop M; Hulstijn W; Sabbe B
    Brain Imaging Behav; 2013 Mar; 7(1):85-90. PubMed ID: 22847714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemispheric lateralization of verbal and spatial working memory during adolescence.
    Nagel BJ; Herting MM; Maxwell EC; Bruno R; Fair D
    Brain Cogn; 2013 Jun; 82(1):58-68. PubMed ID: 23511846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal working memory development is related to structural maturation of frontal and parietal cortices.
    Tamnes CK; Walhovd KB; Grydeland H; Holland D; Østby Y; Dale AM; Fjell AM
    J Cogn Neurosci; 2013 Oct; 25(10):1611-23. PubMed ID: 23767921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.
    Slotnick SD
    Brain Res; 2010 May; 1330():89-100. PubMed ID: 20307512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometry and connectivity of the fronto-parietal verbal working memory network in development.
    Østby Y; Tamnes CK; Fjell AM; Walhovd KB
    Neuropsychologia; 2011 Dec; 49(14):3854-62. PubMed ID: 22001853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional asymmetry of superior parietal lobule for working memory in the elderly.
    Otsuka Y; Osaka N; Osaka M
    Neuroreport; 2008 Sep; 19(14):1355-9. PubMed ID: 18766010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.
    Morgan HM; Jackson MC; van Koningsbruggen MG; Shapiro KL; Linden DE
    Brain Stimul; 2013 Mar; 6(2):122-9. PubMed ID: 22483548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of parietofrontal networks underlying visuospatial short-term memory encoding.
    Croizé AC; Ragot R; Garnero L; Ducorps A; Pélégrini-Issac M; Dauchot K; Benali H; Burnod Y
    Neuroimage; 2004 Nov; 23(3):787-99. PubMed ID: 15528080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural systems for visual orienting and their relationships to spatial working memory.
    Corbetta M; Kincade JM; Shulman GL
    J Cogn Neurosci; 2002 Apr; 14(3):508-23. PubMed ID: 11970810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral lateralization index based on intensity of bold signal of FMRI.
    Lim DW; Min BC; Kim HJ; Choi MH; Lee SJ; Jun JH; Lee B; Chung SC
    Int J Neurosci; 2008 Nov; 118(11):1628-42. PubMed ID: 18853338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working memory of somatosensory stimuli: an fMRI study.
    Savini N; Brunetti M; Babiloni C; Ferretti A
    Int J Psychophysiol; 2012 Dec; 86(3):220-8. PubMed ID: 23044088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain activation and deactivation during location and color working memory tasks in 11-13-year-old children.
    Vuontela V; Steenari MR; Aronen ET; Korvenoja A; Aronen HJ; Carlson S
    Brain Cogn; 2009 Feb; 69(1):56-64. PubMed ID: 18620789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material-specific lateralization of working memory in the medial temporal lobe.
    Wagner DD; Sziklas V; Garver KE; Jones-Gotman M
    Neuropsychologia; 2009 Jan; 47(1):112-22. PubMed ID: 18775736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial working memory and spatial attention rely on common neural processes in the intraparietal sulcus.
    Silk TJ; Bellgrove MA; Wrafter P; Mattingley JB; Cunnington R
    Neuroimage; 2010 Nov; 53(2):718-24. PubMed ID: 20615473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.