These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23682823)

  • 1. Manipulation and confinement of single particles using fluid flow.
    Tanyeri M; Schroeder CM
    Nano Lett; 2013 Jun; 13(6):2357-64. PubMed ID: 23682823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic trap for single particles and cells.
    Tanyeri M; Johnson-Chavarria EM; Schroeder CM
    Appl Phys Lett; 2010 May; 96(22):224101. PubMed ID: 20585593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation.
    Būtaitė UG; Gibson GM; Ho YD; Taverne M; Taylor JM; Phillips DB
    Nat Commun; 2019 Mar; 10(1):1215. PubMed ID: 30872572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles.
    Tornay R; Braschler T; Demierre N; Steitz B; Finka A; Hofmann H; Hubbell JA; Renaud P
    Lab Chip; 2008 Feb; 8(2):267-73. PubMed ID: 18231665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stokes trap for multiplexed particle manipulation and assembly using fluidics.
    Shenoy A; Rao CV; Schroeder CM
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3976-81. PubMed ID: 27035979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging.
    Gao Y; Harder R; Southworth SH; Guest JR; Huang X; Yan Z; Ocola LE; Yifat Y; Sule N; Ho PJ; Pelton M; Scherer NF; Young L
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4018-4024. PubMed ID: 30765527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss-based optical trap for on-chip particle analysis.
    Kühn S; Measor P; Lunt EJ; Phillips BS; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2009 Aug; 9(15):2212-6. PubMed ID: 19606298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opto-hydrodynamic tweezers.
    Vasantham S; Kotnala A; Promovych Y; Garstecki P; Derzsi L
    Lab Chip; 2024 Jan; 24(3):517-527. PubMed ID: 38165913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial confinement of ultrasonic force fields in microfluidic channels.
    Manneberg O; Melker Hagsäter S; Svennebring J; Hertz HM; Kutter JP; Bruus H; Wiklund M
    Ultrasonics; 2009 Jan; 49(1):112-9. PubMed ID: 18701122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.