These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 23683093)
1. Impact of primary spherical aberration, spatial frequency and Stiles Crawford apodization on wavefront determined refractive error: a computational study. Xu R; Bradley A; Thibos LN Ophthalmic Physiol Opt; 2013 Jul; 33(4):444-55. PubMed ID: 23683093 [TBL] [Abstract][Full Text] [Related]
2. Influence of spherical aberration, stimulus spatial frequency, and pupil apodisation on subjective refractions. Bradley A; Xu R; Thibos L; Marin G; Hernandez M Ophthalmic Physiol Opt; 2014 May; 34(3):309-20. PubMed ID: 24397356 [TBL] [Abstract][Full Text] [Related]
3. Modelling the effects of secondary spherical aberration on refractive error, image quality and depth of focus. Xu R; Bradley A; López Gil N; Thibos LN Ophthalmic Physiol Opt; 2015 Jan; 35(1):28-38. PubMed ID: 25532544 [TBL] [Abstract][Full Text] [Related]
4. The refraction of the eye in the relation to spherical aberration and pupil size. Charman WN; Jennings JA; Whitefoot H Br J Physiol Opt; 1978; 32():78-93. PubMed ID: 737383 [TBL] [Abstract][Full Text] [Related]
5. Impact of contact lens zone geometry and ocular optics on bifocal retinal image quality. Bradley A; Nam J; Xu R; Harman L; Thibos L Ophthalmic Physiol Opt; 2014 May; 34(3):331-45. PubMed ID: 24588552 [TBL] [Abstract][Full Text] [Related]
6. Differences between wavefront and subjective refraction for infrared light. Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218 [TBL] [Abstract][Full Text] [Related]
7. Choice of reference axis in ocular wave-front aberration measurement. Cui C; Lakshminarayanan V J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2488-96. PubMed ID: 9729860 [TBL] [Abstract][Full Text] [Related]
8. Effect of Pupil Size on Wavefront Refraction during Orthokeratology. Faria-Ribeiro M; Navarro R; González-Méijome JM Optom Vis Sci; 2016 Nov; 93(11):1399-1408. PubMed ID: 27668637 [TBL] [Abstract][Full Text] [Related]
9. Refractive status in eyes with inhomogeneous or irregular pupils. Navarro R; Fernández-Sánchez V; López-Gil N Optom Vis Sci; 2014 Feb; 91(2):221-30. PubMed ID: 24270635 [TBL] [Abstract][Full Text] [Related]
10. Impact of pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration. Zheleznyak L; Jung H; Yoon G Invest Ophthalmol Vis Sci; 2014 Jan; 55(1):70-7. PubMed ID: 24265022 [TBL] [Abstract][Full Text] [Related]
11. Optical quality of the Visian Implantable Collamer Lens for different refractive powers. Pérez-Vives C; Domínguez-Vicent A; Ferrer-Blasco T; Pons ÁM; Montés-Micó R Graefes Arch Clin Exp Ophthalmol; 2013 May; 251(5):1423-9. PubMed ID: 23142994 [TBL] [Abstract][Full Text] [Related]
12. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology. Benard Y; Lopez-Gil N; Legras R J Cataract Refract Surg; 2010 Dec; 36(12):2129-38. PubMed ID: 21111317 [TBL] [Abstract][Full Text] [Related]
13. Refractive Changes Induced by Spherical Aberration in Laser Correction Procedures: An Adaptive Optics Study. Amigó A; Martinez-Sorribes P; Recuerda M J Refract Surg; 2017 Jul; 33(7):470-474. PubMed ID: 28681906 [TBL] [Abstract][Full Text] [Related]
14. Influence of Stiles-Crawford effect apodization on spatial visual performance. Atchison DA; Joblin A; Smith G J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2545-51. PubMed ID: 9729867 [TBL] [Abstract][Full Text] [Related]
15. Modelling the impact of spherical aberration on accommodation. Thibos LN; Bradley A; López-Gil N Ophthalmic Physiol Opt; 2013 Jul; 33(4):482-96. PubMed ID: 23528176 [TBL] [Abstract][Full Text] [Related]
16. The effect of spherical aberration on visual performance and refractive state for stimuli and tasks typical of night viewing. Marín-Franch I; Xu R; Bradley A; Thibos LN; López-Gil N J Optom; 2018; 11(3):144-152. PubMed ID: 29292240 [TBL] [Abstract][Full Text] [Related]
17. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation. Legras R; Chateau N; Charman WN Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392 [TBL] [Abstract][Full Text] [Related]
18. Predicting subjective judgment of best focus with objective image quality metrics. Cheng X; Bradley A; Thibos LN J Vis; 2004 Apr; 4(4):310-21. PubMed ID: 15134478 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of image quality metrics for the prediction of subjective best focus. Kilintari M; Pallikaris A; Tsiklis N; Ginis HS Optom Vis Sci; 2010 Mar; 87(3):183-9. PubMed ID: 20125061 [TBL] [Abstract][Full Text] [Related]
20. Optical Aberrations of Guinea Pig Eyes. Singh SE; Wildsoet CF; Roorda AJ Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):39. PubMed ID: 32821915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]