BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23683409)

  • 1. Influence of shell composition on the resonance frequency of microbubble contrast agents.
    Dicker S; Mleczko M; Siepmann M; Wallace N; Sunny Y; Bawiec CR; Schmitz G; Lewin P; Wrenn SP
    Ultrasound Med Biol; 2013 Jul; 39(7):1292-302. PubMed ID: 23683409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size distribution of microbubbles as a function of shell composition.
    Dicker S; Mleczko M; Schmitz G; Wrenn SP
    Ultrasonics; 2013 Sep; 53(7):1363-7. PubMed ID: 23642496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bursting bubbles and bilayers.
    Wrenn SP; Dicker SM; Small EF; Dan NR; Mleczko M; Schmitz G; Lewin PA
    Theranostics; 2012; 2(12):1140-59. PubMed ID: 23382772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial cavitation threshold of nested microbubbles.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2015 Apr; 58():67-74. PubMed ID: 25620709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.
    Helfield B; Black JJ; Qin B; Pacella J; Chen X; Villanueva FS
    Ultrasound Med Biol; 2016 Mar; 42(3):782-94. PubMed ID: 26674676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles.
    Gu Y; Chen C; Tu J; Guo X; Wu H; Zhang D
    Ultrason Sonochem; 2016 Mar; 29():309-16. PubMed ID: 26585011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure.
    Kumar KN; Sarkar K
    Ultrasound Med Biol; 2016 Apr; 42(4):1010-7. PubMed ID: 26777069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design and experimental investigation of surfactant encapsulated microbubbles.
    Zong Y; Wan M; Wang S; Zhang G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e119-22. PubMed ID: 16859725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering.
    Paul S; Russakow D; Rodgers T; Sarkar K; Cochran M; Wheatley MA
    Ultrasound Med Biol; 2013 Jul; 39(7):1277-91. PubMed ID: 23643050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
    Doinikov AA; Haac JF; Dayton PA
    Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effects of microbubble shell disruption on population scattering and implications for modeling contrast agent behavior.
    Chien CT; Burns PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):286-92. PubMed ID: 15128215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency.
    Helfield BL; Leung BY; Huo X; Goertz DE
    Ultrasonics; 2014 Aug; 54(6):1419-24. PubMed ID: 24746478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: a comparative study of five agents.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2012 May; 38(5):846-63. PubMed ID: 22402024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material Properties, Dissolution and Time Evolution of PEGylated Lipid-Shelled Microbubbles: Effects of the Polyethylene Glycol Hydrophilic Chain Configurations.
    Azami RH; Aliabouzar M; Osborn J; Kumar KN; Forsberg F; Eisenbrey JR; Mallik S; Sarkar K
    Ultrasound Med Biol; 2022 Sep; 48(9):1720-1732. PubMed ID: 35697583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances.
    Doinikov AA; Bouakaz A
    Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balancing stealth and echogenic properties in an ultrasound contrast agent with drug delivery potential.
    Jablonowski LJ; Alfego D; Andorko JI; Eisenbrey JR; Teraphongphom N; Wheatley MA
    Biomaterials; 2016 Oct; 103():197-206. PubMed ID: 27388945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.
    Xu S; Hu H; Jiang H; Xu Z; Wan M
    J Ultrasound Med; 2014 Nov; 33(11):1957-70. PubMed ID: 25336483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.