These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23684079)

  • 21. Hand orientation in hand paddle swimming.
    Gourgoulis V; Aggeloussis N; Vezos N; Antoniou P; Mavromatis G
    Int J Sports Med; 2008 May; 29(5):429-34. PubMed ID: 17879890
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions.
    Ware C; Trites AW; Rosen DA; Potvin J
    PLoS One; 2016; 11(6):e0157326. PubMed ID: 27285467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating propulsive forces in swimming from three-dimensional kinematic data.
    Payton CJ; Bartlett RM
    J Sports Sci; 1995 Dec; 13(6):447-54. PubMed ID: 8850570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unsteady computational fluid dynamics in front crawl swimming.
    Samson M; Bernard A; Monnet T; Lacouture P; David L
    Comput Methods Biomech Biomed Engin; 2017 May; 20(7):783-793. PubMed ID: 28332407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamics of linear acceleration in bluegill sunfish,
    Wise TN; Schwalbe MAB; Tytell ED
    J Exp Biol; 2018 Nov; 221(Pt 23):. PubMed ID: 30291157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A computational fluid dynamics study of propulsion due to the orientation effects of swimmer's hand.
    Bilinauskaite M; Mantha VR; Rouboa AI; Ziliukas P; Silva AJ
    J Appl Biomech; 2013 Dec; 29(6):817-23. PubMed ID: 24482258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of hand forces and propelling efficiency during front crawl swimming with hand paddles.
    Gourgoulis V; Aggeloussis N; Vezos N; Kasimatis P; Antoniou P; Mavromatis G
    J Biomech; 2008; 41(1):208-15. PubMed ID: 17706655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The suitability of Sanders' model for calculation of the propulsive force generated by the hands during sculling motion.
    Gomes LE; Boeira L; Loss JF
    J Sports Sci; 2017 May; 35(10):936-944. PubMed ID: 27400118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerating fishes increase propulsive efficiency by modulating vortex ring geometry.
    Akanyeti O; Putney J; Yanagitsuru YR; Lauder GV; Stewart WJ; Liao JC
    Proc Natl Acad Sci U S A; 2017 Dec; 114(52):13828-13833. PubMed ID: 29229818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining propulsive force in front crawl swimming: a comparison of two methods.
    Berger MA; Hollander AP; de Groot G
    J Sports Sci; 1999 Feb; 17(2):97-105. PubMed ID: 10069266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perception and action in swimming: Effects of aquatic environment on upper limb inter-segmental coordination.
    Guignard B; Rouard A; Chollet D; Ayad O; Bonifazi M; Dalla Vedova D; Seifert L
    Hum Mov Sci; 2017 Oct; 55():240-254. PubMed ID: 28846856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer's performance.
    Lecrivain G; Slaouti A; Payton C; Kennedy I
    J Biomech; 2008 Sep; 41(13):2855-9. PubMed ID: 18718594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics.
    Bixler B; Riewald S
    J Biomech; 2002 May; 35(5):713-7. PubMed ID: 11955512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of paddles on pressure and force generation at the hand during front crawl.
    Tsunokawa T; Tsuno T; Mankyu H; Takagi H; Ogita F
    Hum Mov Sci; 2018 Feb; 57():409-416. PubMed ID: 29079453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of finger spreading on drag of the hand in human swimming.
    van Houwelingen J; Willemsen DHJ; Kunnen RPJ; van Heijst GF; Grift EJ; Breugem WP; Delfos R; Westerweel J; Clercx HJH; van de Water W
    J Biomech; 2017 Oct; 63():67-73. PubMed ID: 28823502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin.
    Peng J; Dabiri JO; Madden PG; Lauder GV
    J Exp Biol; 2007 Feb; 210(Pt 4):685-98. PubMed ID: 17267654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamics of surface swimming in leopard frogs (Rana pipiens).
    Johansson LC; Lauder GV
    J Exp Biol; 2004 Oct; 207(Pt 22):3945-58. PubMed ID: 15472025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measurement of time-varying kinematics of a dolphin in burst accelerating swimming.
    Tanaka H; Li G; Uchida Y; Nakamura M; Ikeda T; Liu H
    PLoS One; 2019; 14(1):e0210860. PubMed ID: 30699184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenging zebrafish escape responses by increasing water viscosity.
    Danos N; Lauder GV
    J Exp Biol; 2012 Jun; 215(Pt 11):1854-62. PubMed ID: 22573764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamics of burst swimming fish larvae; a conceptual model approach.
    Verhagen JH
    J Theor Biol; 2004 Jul; 229(2):235-48. PubMed ID: 15207478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.