These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23684101)

  • 1. Spatio-temporal parameters and lower-limb kinematics of turning gait in typically developing children.
    Dixon PC; Stebbins J; Theologis T; Zavatsky AB
    Gait Posture; 2013 Sep; 38(4):870-5. PubMed ID: 23684101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of turning tasks in clinical gait analysis for children with cerebral palsy.
    Dixon PC; Stebbins J; Theologis T; Zavatsky AB
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():286-94. PubMed ID: 26549659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children.
    Dixon PC; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2014 Nov; 47(15):3726-33. PubMed ID: 25311452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle contributions to centre of mass acceleration during turning gait in typically developing children: A simulation study.
    Dixon PC; Jansen K; Jonkers I; Stebbins J; Theologis T; Zavatsky AB
    J Biomech; 2015 Dec; 48(16):4238-45. PubMed ID: 26555714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temporal-spatial and ground reaction impulses of turning gait: is turning symmetrical?
    Strike SC; Taylor MJ
    Gait Posture; 2009 Jun; 29(4):597-602. PubMed ID: 19195890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold of equinus which alters biomechanical gait parameters in children.
    Houx L; Lempereur M; Rémy-Néris O; Brochard S
    Gait Posture; 2013 Sep; 38(4):582-9. PubMed ID: 23465759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait adaptations to different paths of stair descent.
    Gallagher KM; VandenBussche J; Callaghan JP
    Gait Posture; 2013 Sep; 38(4):691-5. PubMed ID: 23583606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of Characteristics between Different Turning Strategies].
    Zhang J; Cheng F; Su H; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):448-54. PubMed ID: 29709142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional kinematics and spatiotemporal parameters of gait in 6-10 year old typically developed children in the Cape Metropole of South Africa - a pilot study.
    Smith Y; Louw Q; Brink Y
    BMC Pediatr; 2016 Dec; 16(1):200. PubMed ID: 27912747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of simulated crouch gait on foot kinematics and kinetics in healthy children.
    Balzer J; Schelldorfer S; Bauer C; van der Linden ML
    Gait Posture; 2013 Sep; 38(4):619-24. PubMed ID: 23473807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance training improves gait kinematics in persons with multiple sclerosis.
    Gutierrez GM; Chow JW; Tillman MD; McCoy SC; Castellano V; White LJ
    Arch Phys Med Rehabil; 2005 Sep; 86(9):1824-9. PubMed ID: 16181949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local dynamic stability in turning and straight-line gait.
    Segal AD; Orendurff MS; Czerniecki JM; Shofer JB; Klute GK
    J Biomech; 2008; 41(7):1486-93. PubMed ID: 18405902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A kinematic description of dynamic midfoot break in children using a multi-segment foot model.
    Maurer JD; Ward V; Mayson TA; Davies KR; Alvarez CM; Beauchamp RD; Black AH
    Gait Posture; 2013 Jun; 38(2):287-92. PubMed ID: 23273965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults.
    Voss S; Joyce J; Biskis A; Parulekar M; Armijo N; Zampieri C; Tracy R; Palmer AS; Fefferman M; Ouyang B; Liu Y; Berry-Kravis E; O'Keefe JA
    Gait Posture; 2020 Jul; 80():206-213. PubMed ID: 32531757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining anticipatory turn signaling in typically developing 4- and 5-year-old children for applications in active orthotic devices.
    Stirling L; Weatherly J
    Gait Posture; 2013 Mar; 37(3):349-53. PubMed ID: 22921492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.
    Jenkyn TR; Shultz R; Giffin JR; Birmingham TB
    Gait Posture; 2010 Feb; 31(2):153-8. PubMed ID: 19897368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of walking speed on the gait of typically developing children.
    Schwartz MH; Rozumalski A; Trost JP
    J Biomech; 2008; 41(8):1639-50. PubMed ID: 18466909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle and midfoot kinetics during normal gait: a multi-segment approach.
    Dixon PC; Böhm H; Döderlein L
    J Biomech; 2012 Apr; 45(6):1011-6. PubMed ID: 22304842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of running kinematics and kinetics in children with and without developmental coordination disorder.
    Chia LC; Licari MK; Guelfi KJ; Reid SL
    Gait Posture; 2013 Jun; 38(2):264-9. PubMed ID: 23266248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.