BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23684227)

  • 1. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An impedimetric chemical sensor for determination of detergents residues.
    Bratov A; Abramova N; Ipatov A; Merlos A
    Talanta; 2013 Mar; 106():286-92. PubMed ID: 23598129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip.
    Noh J; Park S; Boo H; Kim HC; Chung TD
    Lab Chip; 2011 Feb; 11(4):664-71. PubMed ID: 21135953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
    Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM
    Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries.
    Chein R; Tsai K; Yeh L
    Electrophoresis; 2010 Jan; 31(3):535-45. PubMed ID: 20119963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution.
    Khamaisi B; Vaknin O; Shaya O; Ashkenasy N
    ACS Nano; 2010 Aug; 4(8):4601-8. PubMed ID: 20731443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 12. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.
    Anderson RR; Hu W; Noh JW; Dahlquist WC; Ness SJ; Gustafson TM; Richards DC; Kim S; Mazzeo BA; Woolley AT; Nordin GP
    Lab Chip; 2011 Jun; 11(12):2088-96. PubMed ID: 21547316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value.
    Chang CC; Yeh CP; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):758-64. PubMed ID: 22522532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device.
    Sun J; Tandogan N; Gu AZ; Müftü S; Goluch ED; Wan KT
    Colloids Surf B Biointerfaces; 2018 May; 165():381-387. PubMed ID: 29529580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays.
    Hadwen B; Broder GR; Morganti D; Jacobs A; Brown C; Hector JR; Kubota Y; Morgan H
    Lab Chip; 2012 Sep; 12(18):3305-13. PubMed ID: 22785575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.