These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23684227)

  • 1. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An impedimetric chemical sensor for determination of detergents residues.
    Bratov A; Abramova N; Ipatov A; Merlos A
    Talanta; 2013 Mar; 106():286-92. PubMed ID: 23598129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip.
    Noh J; Park S; Boo H; Kim HC; Chung TD
    Lab Chip; 2011 Feb; 11(4):664-71. PubMed ID: 21135953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.
    Sadeghi S; Ding H; Shah GJ; Chen S; Keng PY; Kim CJ; van Dam RM
    Anal Chem; 2012 Feb; 84(4):1915-23. PubMed ID: 22248060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries.
    Chein R; Tsai K; Yeh L
    Electrophoresis; 2010 Jan; 31(3):535-45. PubMed ID: 20119963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating particles in microfluidics by floating electrodes.
    Yalcin SE; Sharma A; Qian S; Joo SW; Baysal O
    Electrophoresis; 2010 Nov; 31(22):3711-8. PubMed ID: 20945412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical performance of silicon-on-insulator field-effect transistors with multiple top-gate organic layers in electrolyte solution.
    Khamaisi B; Vaknin O; Shaya O; Ashkenasy N
    ACS Nano; 2010 Aug; 4(8):4601-8. PubMed ID: 20731443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

  • 12. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H; Chung TD; Kim HC
    Anal Chem; 2005 Apr; 77(8):2490-5. PubMed ID: 15828785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.
    Anderson RR; Hu W; Noh JW; Dahlquist WC; Ness SJ; Gustafson TM; Richards DC; Kim S; Mazzeo BA; Woolley AT; Nordin GP
    Lab Chip; 2011 Jun; 11(12):2088-96. PubMed ID: 21547316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value.
    Chang CC; Yeh CP; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):758-64. PubMed ID: 22522532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device.
    Sun J; Tandogan N; Gu AZ; Müftü S; Goluch ED; Wan KT
    Colloids Surf B Biointerfaces; 2018 May; 165():381-387. PubMed ID: 29529580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable large area digital microfluidic array with integrated droplet sensing for bioassays.
    Hadwen B; Broder GR; Morganti D; Jacobs A; Brown C; Hector JR; Kubota Y; Morgan H
    Lab Chip; 2012 Sep; 12(18):3305-13. PubMed ID: 22785575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.