BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23684610)

  • 41. The role of pulmonary collectin N-terminal domains in surfactant structure, function, and homeostasis in vivo.
    Palaniyar N; Zhang L; Kuzmenko A; Ikegami M; Wan S; Wu H; Korfhagen TR; Whitsett JA; McCormack FX
    J Biol Chem; 2002 Jul; 277(30):26971-9. PubMed ID: 12015304
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alveolar lipids in pulmonary disease. A review.
    Agudelo CW; Samaha G; Garcia-Arcos I
    Lipids Health Dis; 2020 Jun; 19(1):122. PubMed ID: 32493486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification of a cell-surface receptor for surfactant protein A.
    Chroneos ZC; Abdolrasulnia R; Whitsett JA; Rice WR; Shepherd VL
    J Biol Chem; 1996 Jul; 271(27):16375-83. PubMed ID: 8663107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrin beta6 mediates phospholipid and collectin homeostasis by activation of latent TGF-beta1.
    Koth LL; Alex B; Hawgood S; Nead MA; Sheppard D; Erle DJ; Morris DG
    Am J Respir Cell Mol Biol; 2007 Dec; 37(6):651-9. PubMed ID: 17641300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pulmonary surfactants and their role in pathophysiology of lung disorders.
    Akella A; Deshpande SB
    Indian J Exp Biol; 2013 Jan; 51(1):5-22. PubMed ID: 23441475
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surfactant protein-D regulates the postnatal maturation of pulmonary surfactant lipid pool sizes.
    Ikegami M; Grant S; Korfhagen T; Scheule RK; Whitsett JA
    J Appl Physiol (1985); 2009 May; 106(5):1545-52. PubMed ID: 19265061
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The double knockout of Bach1 and Bach2 in mice reveals shared compensatory mechanisms in regulating alveolar macrophage function and lung surfactant homeostasis.
    Ebina-Shibuya R; Watanabe-Matsui M; Matsumoto M; Itoh-Nakadai A; Funayama R; Nakayama K; Muto A; Igarashi K
    J Biochem; 2016 Dec; 160(6):333-344. PubMed ID: 27387751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exogenous surfactant changes the phenotype of alveolar macrophages in mice.
    Kramer BW; Jobe AH; Ikegami M
    Am J Physiol Lung Cell Mol Physiol; 2001 Apr; 280(4):L689-94. PubMed ID: 11238009
    [TBL] [Abstract][Full Text] [Related]  

  • 49. P63 (CKAP4) as an SP-A receptor: implications for surfactant turnover.
    Bates SR
    Cell Physiol Biochem; 2010; 25(1):41-54. PubMed ID: 20054143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C.
    Ruwisch J; Sehlmeyer K; Roldan N; Garcia-Alvarez B; Perez-Gil J; Weaver TE; Ochs M; Knudsen L; Lopez-Rodriguez E
    Am J Respir Cell Mol Biol; 2020 Apr; 62(4):466-478. PubMed ID: 31922895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distinct changes in pulmonary surfactant homeostasis in common beta-chain- and GM-CSF-deficient mice.
    Reed JA; Ikegami M; Robb L; Begley CG; Ross G; Whitsett JA
    Am J Physiol Lung Cell Mol Physiol; 2000 Jun; 278(6):L1164-71. PubMed ID: 10835321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adhesion GPCR Function in Pulmonary Development and Disease.
    Ludwig MG; Seuwen K; Bridges JP
    Handb Exp Pharmacol; 2016; 234():309-327. PubMed ID: 27832494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits.
    Zebialowicz Ahlström J; Massaro F; Mikolka P; Feinstein R; Perchiazzi G; Basabe-Burgos O; Curstedt T; Larsson A; Johansson J; Rising A
    Respir Res; 2019 Nov; 20(1):245. PubMed ID: 31694668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SP-D and GM-CSF regulate surfactant homeostasis via distinct mechanisms.
    Ikegami M; Hull WM; Yoshida M; Wert SE; Whitsett JA
    Am J Physiol Lung Cell Mol Physiol; 2001 Sep; 281(3):L697-703. PubMed ID: 11504698
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lung Surfactant Lipids Provide Immune Protection Against
    García-Fojeda B; González-Carnicero Z; de Lorenzo A; Minutti CM; de Tapia L; Euba B; Iglesias-Ceacero A; Castillo-Lluva S; Garmendia J; Casals C
    Front Immunol; 2019; 10():458. PubMed ID: 30936871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MiR-511-5p functions as a tumor suppressor and a predictive of prognosis in colorectal cancer by directly targeting GPR116.
    Wang C; Fan HQ; Zhang YW
    Eur Rev Med Pharmacol Sci; 2019 Jul; 23(14):6119-6130. PubMed ID: 31364112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surfactant peptides stimulate uptake of phosphatidylcholine by isolated cells.
    Rice WR; Sarin VK; Fox JL; Baatz J; Wert S; Whitsett JA
    Biochim Biophys Acta; 1989 Nov; 1006(2):237-45. PubMed ID: 2597670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pulmonary surfactant protein SP-B promotes exocytosis of lamellar bodies in alveolar type II cells.
    Martínez-Calle M; Olmeda B; Dietl P; Frick M; Pérez-Gil J
    FASEB J; 2018 Aug; 32(8):4600-4611. PubMed ID: 29543530
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GPR116 promotes ferroptosis in sepsis-induced liver injury by suppressing system Xc
    Wang Y; Wang T; Xiang Q; Li N; Wang J; Liu J; Zhang Y; Yang T; Bian J
    Cell Biol Toxicol; 2023 Dec; 39(6):3015-3030. PubMed ID: 37266730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The involvement of GM-CSF deficiencies in parallel pathways of pulmonary alveolar proteinosis and the alcoholic lung.
    Slovinsky WS; Romero F; Sales D; Shaghaghi H; Summer R
    Alcohol; 2019 Nov; 80():73-79. PubMed ID: 31229291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.