These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 23684654)
1. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. Dell'Orco D FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654 [TBL] [Abstract][Full Text] [Related]
2. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision. Dell'Orco D; Koch KW Biochem J; 2011 Dec; 440(2):263-71. PubMed ID: 21843151 [TBL] [Abstract][Full Text] [Related]
3. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Seno K; Hayashi F J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438 [TBL] [Abstract][Full Text] [Related]
4. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors. Nair KS; Balasubramanian N; Slepak VZ Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295 [TBL] [Abstract][Full Text] [Related]
5. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs. Hayashi F; Saito N; Tanimoto Y; Okada K; Morigaki K; Seno K; Maekawa S Commun Biol; 2019; 2():209. PubMed ID: 31240247 [TBL] [Abstract][Full Text] [Related]
6. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling. Mendez A; Lem J; Simon M; Chen J J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919 [TBL] [Abstract][Full Text] [Related]
7. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Gunkel M; Schöneberg J; Alkhaldi W; Irsen S; Noé F; Kaupp UB; Al-Amoudi A Structure; 2015 Apr; 23(4):628-38. PubMed ID: 25728926 [TBL] [Abstract][Full Text] [Related]
8. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments. Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403 [TBL] [Abstract][Full Text] [Related]
9. Kinetics of turn-offs of frog rod phototransduction cascade. Astakhova LA; Firsov ML; Govardovskii VI J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597 [TBL] [Abstract][Full Text] [Related]
10. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Zhang P; Zawadzki RJ; Goswami M; Nguyen PT; Yarov-Yarovoy V; Burns ME; Pugh EN Proc Natl Acad Sci U S A; 2017 Apr; 114(14):E2937-E2946. PubMed ID: 28320964 [TBL] [Abstract][Full Text] [Related]
11. Detecting single photons: a supramolecular matter? Cangiano L; Dell'Orco D FEBS Lett; 2013 Jan; 587(1):1-4. PubMed ID: 23178927 [TBL] [Abstract][Full Text] [Related]
12. Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras. Natochin M; Barren B; Ahmad ST; O'Tousa JE; Artemyev NO Vision Res; 2006 Dec; 46(27):4575-81. PubMed ID: 16979689 [TBL] [Abstract][Full Text] [Related]
13. The vertebrate phototransduction cascade: amplification and termination mechanisms. Chen CK Rev Physiol Biochem Pharmacol; 2005; 154():101-21. PubMed ID: 16634148 [TBL] [Abstract][Full Text] [Related]