These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 23684654)

  • 1. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision.
    Dell'Orco D; Koch KW
    Biochem J; 2011 Dec; 440(2):263-71. PubMed ID: 21843151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
    Seno K; Hayashi F
    J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors.
    Nair KS; Balasubramanian N; Slepak VZ
    Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raftophilic rhodopsin-clusters offer stochastic platforms for G protein signalling in retinal discs.
    Hayashi F; Saito N; Tanimoto Y; Okada K; Morigaki K; Seno K; Maekawa S
    Commun Biol; 2019; 2():209. PubMed ID: 31240247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
    Gunkel M; Schöneberg J; Alkhaldi W; Irsen S; Noé F; Kaupp UB; Al-Amoudi A
    Structure; 2015 Apr; 23(4):628-38. PubMed ID: 25728926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments.
    Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y
    J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.
    Zhang P; Zawadzki RJ; Goswami M; Nguyen PT; Yarov-Yarovoy V; Burns ME; Pugh EN
    Proc Natl Acad Sci U S A; 2017 Apr; 114(14):E2937-E2946. PubMed ID: 28320964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting single photons: a supramolecular matter?
    Cangiano L; Dell'Orco D
    FEBS Lett; 2013 Jan; 587(1):1-4. PubMed ID: 23178927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing rhodopsin-transducin interaction using Drosophila Rh1-bovine rhodopsin chimeras.
    Natochin M; Barren B; Ahmad ST; O'Tousa JE; Artemyev NO
    Vision Res; 2006 Dec; 46(27):4575-81. PubMed ID: 16979689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vertebrate phototransduction cascade: amplification and termination mechanisms.
    Chen CK
    Rev Physiol Biochem Pharmacol; 2005; 154():101-21. PubMed ID: 16634148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elementary response triggered by transducin in retinal rods.
    Yue WWS; Silverman D; Ren X; Frederiksen R; Sakai K; Yamashita T; Shichida Y; Cornwall MC; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5144-5153. PubMed ID: 30796193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Raftophilicity of Rhodopsin Photoreceptor in a Patterned Model Membrane.
    Tanimoto Y; Okada K; Hayashi F; Morigaki K
    Biophys J; 2015 Dec; 109(11):2307-16. PubMed ID: 26636942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiencies of activation of transducin by cone and rod visual pigments.
    Imamoto Y; Seki I; Yamashita T; Shichida Y
    Biochemistry; 2013 Apr; 52(17):3010-8. PubMed ID: 23570417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular organization of rhodopsin in rod photoreceptor cell membranes.
    Park PS
    Pflugers Arch; 2021 Sep; 473(9):1361-1376. PubMed ID: 33591421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes.
    Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A
    PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
    Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.