BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1158 related articles for article (PubMed ID: 23684732)

  • 1. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment.
    Greening DW; Kapp EA; Ji H; Speed TP; Simpson RJ
    Biochim Biophys Acta; 2013 Nov; 1834(11):2396-407. PubMed ID: 23684732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulindac modulates secreted protein expression from LIM1215 colon carcinoma cells prior to apoptosis.
    Greening DW; Ji H; Kapp EA; Simpson RJ
    Biochim Biophys Acta; 2013 Nov; 1834(11):2293-307. PubMed ID: 23899461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma.
    Bernhard OK; Greening DW; Barnes TW; Ji H; Simpson RJ
    Biochim Biophys Acta; 2013 Nov; 1834(11):2372-9. PubMed ID: 23557862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context.
    Schaaij-Visser TB; de Wit M; Lam SW; Jiménez CR
    Biochim Biophys Acta; 2013 Nov; 1834(11):2242-58. PubMed ID: 23376433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative secretome analysis reveals the interactions between epithelia and tumor cells by in vitro modulating colon cancer microenvironment.
    Zeng X; Yang P; Chen B; Jin X; Liu Y; Zhao X; Liang S
    J Proteomics; 2013 Aug; 89():51-70. PubMed ID: 23748022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic Processing of Neuregulin 1 Type III by Three Intramembrane-cleaving Proteases.
    Fleck D; Voss M; Brankatschk B; Giudici C; Hampel H; Schwenk B; Edbauer D; Fukumori A; Steiner H; Kremmer E; Haug-Kröper M; Rossner MJ; Fluhrer R; Willem M; Haass C
    J Biol Chem; 2016 Jan; 291(1):318-33. PubMed ID: 26574544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing.
    Lichtenthaler SF; Haass C; Steiner H
    J Neurochem; 2011 Jun; 117(5):779-96. PubMed ID: 21413990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidomics for Studying Limited Proteolysis.
    Tsuchiya T; Osaki T; Minamino N; Sasaki K
    J Proteome Res; 2015 Nov; 14(11):4921-31. PubMed ID: 26479776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of cathepsin B on the interstitial fluid proteome of murine breast cancers.
    Gomez-Auli A; Hillebrand LE; Biniossek ML; Peters C; Reinheckel T; Schilling O
    Biochimie; 2016 Mar; 122():88-98. PubMed ID: 26455267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids.
    Tauro BJ; Greening DW; Mathias RA; Mathivanan S; Ji H; Simpson RJ
    Mol Cell Proteomics; 2013 Mar; 12(3):587-98. PubMed ID: 23230278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QARIP: a web server for quantitative proteomic analysis of regulated intramembrane proteolysis.
    Ivankov DN; Bogatyreva NS; Hönigschmid P; Dislich B; Hogl S; Kuhn PH; Frishman D; Lichtenthaler SF
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W459-64. PubMed ID: 23729472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential protein-protein interactions of full length human FasL and FasL fragments generated by proteolysis.
    Lettau M; Voss M; Ebsen H; Kabelitz D; Janssen O
    Exp Cell Res; 2014 Jan; 320(2):290-301. PubMed ID: 24291222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix metalloproteinase-7 induces homotypic tumor cell aggregation via proteolytic cleavage of the membrane-bound Kunitz-type inhibitor HAI-1.
    Ishikawa T; Kimura Y; Hirano H; Higashi S
    J Biol Chem; 2017 Dec; 292(50):20769-20784. PubMed ID: 29046355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.
    Prudova A; auf dem Keller U; Butler GS; Overall CM
    Mol Cell Proteomics; 2010 May; 9(5):894-911. PubMed ID: 20305284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptidase specificity from the substrate cleavage collection in the MEROPS database and a tool to measure cleavage site conservation.
    Rawlings ND
    Biochimie; 2016 Mar; 122():5-30. PubMed ID: 26455268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry-based proteomics revealed Glypican-1 as a novel ADAM17 substrate.
    Kawahara R; Granato DC; Yokoo S; Domingues RR; Trindade DM; Paes Leme AF
    J Proteomics; 2017 Jan; 151():53-65. PubMed ID: 27576135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tumor-associated antigen 90K/Mac-2-binding protein secreted by human colon carcinoma cells enhances extracellular levels of promatrilysin and is a novel substrate of matrix metalloproteinases-2, -7 (matrilysin) and -9: Implications of proteolytic cleavage.
    Ulmer TA; Keeler V; André S; Gabius HJ; Loh L; Laferté S
    Biochim Biophys Acta; 2010 Mar; 1800(3):336-43. PubMed ID: 19665518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.