These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23684881)

  • 1. Visual callosal topography in the absence of retinal input.
    Bock AS; Saenz M; Tungaraza R; Boynton GM; Bridge H; Fine I
    Neuroimage; 2013 Nov; 81():325-334. PubMed ID: 23684881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diffusion tensor imaging.
    Chan KC; Cheng JS; Fan S; Zhou IY; Yang J; Wu EX
    Neuroimage; 2012 Feb; 59(3):2274-83. PubMed ID: 21985904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of visual callosal organization in normal, bilaterally enucleated and congenitally anophthalmic mice.
    Rhoades RW; Mooney RD; Fish SE
    Exp Brain Res; 1984; 56(1):92-105. PubMed ID: 6468571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex.
    Bridge H; Cowey A; Ragge N; Watkins K
    Brain; 2009 Dec; 132(Pt 12):3467-80. PubMed ID: 19892766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Callosal connections of the posterior neocortex in normal-eyed, congenitally anophthalmic, and neonatally enucleated mice.
    Olavarria J; van Sluyters RC
    J Comp Neurol; 1984 Dec; 230(2):249-68. PubMed ID: 6512020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience.
    Bock AS; Binda P; Benson NC; Bridge H; Watkins KE; Fine I
    J Neurosci; 2015 Sep; 35(36):12366-82. PubMed ID: 26354906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic organization of V1 projections through the corpus callosum in humans.
    Saenz M; Fine I
    Neuroimage; 2010 Oct; 52(4):1224-9. PubMed ID: 20553894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind.
    Aguirre GK; Datta R; Benson NC; Prasad S; Jacobson SG; Cideciyan AV; Bridge H; Watkins KE; Butt OH; Dain AS; Brandes L; Gennatas ED
    PLoS One; 2016; 11(11):e0164677. PubMed ID: 27812129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of the commissural fiber system in congenital and late-onset blindness.
    Cavaliere C; Aiello M; Soddu A; Laureys S; Reislev NL; Ptito M; Kupers R
    Neuroimage Clin; 2020; 25():102133. PubMed ID: 31945651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional connectivity of visual cortex in the blind follows retinotopic organization principles.
    Striem-Amit E; Ovadia-Caro S; Caramazza A; Margulies DS; Villringer A; Amedi A
    Brain; 2015 Jun; 138(Pt 6):1679-95. PubMed ID: 25869851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary visual cortex projections to extrastriate cortices in enucleated and anophthalmic mice.
    Laramée ME; Bronchti G; Boire D
    Brain Struct Funct; 2014 Nov; 219(6):2051-70. PubMed ID: 23942645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry.
    Shi J; Collignon O; Xu L; Wang G; Kang Y; Leporé F; Lao Y; Joshi AA; Leporé N; Wang Y
    Neuroinformatics; 2015 Jul; 13(3):321-336. PubMed ID: 25649876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging.
    Olavarria JF; Bock AS; Leigland LA; Kroenke CD
    Neural Plast; 2012; 2012():250196. PubMed ID: 23213572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of the visual pathways in congenital blindness.
    Ptito M; Schneider FC; Paulson OB; Kupers R
    Exp Brain Res; 2008 May; 187(1):41-9. PubMed ID: 18224306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphometric changes of the corpus callosum in congenital blindness.
    Tomaiuolo F; Campana S; Collins DL; Fonov VS; Ricciardi E; Sartori G; Pietrini P; Kupers R; Ptito M
    PLoS One; 2014; 9(9):e107871. PubMed ID: 25255324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blindness alters the microstructure of the ventral but not the dorsal visual stream.
    Reislev NL; Kupers R; Siebner HR; Ptito M; Dyrby TB
    Brain Struct Funct; 2016 Jul; 221(6):2891-903. PubMed ID: 26134685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Segmentation of the Corpus Callosum Using a Cell-Competition Algorithm: Diffusion Tensor Imaging-Based Evaluation of Callosal Atrophy and Tissue Alterations in Patients With Systemic Lupus Erythematosus.
    Lee SP; Wu CS; Cheng JZ; Chen CM; Chen YC; Chou MC
    J Comput Assist Tomogr; 2015; 39(5):781-6. PubMed ID: 26295188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual interhemispheric communication and callosal connections of the occipital lobes.
    Berlucchi G
    Cortex; 2014 Jul; 56():1-13. PubMed ID: 23489777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion tensor imaging reveals visual pathway damage in patients with mild cognitive impairment and Alzheimer's disease.
    Nishioka C; Poh C; Sun SW
    J Alzheimers Dis; 2015; 45(1):97-107. PubMed ID: 25537012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of callosal topography in visual cortex of normal and enucleated rats.
    Olavarria JF; Safaeian P
    J Comp Neurol; 2006 Jun; 496(4):495-512. PubMed ID: 16572463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.