BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 23685075)

  • 1. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation.
    Shao S; von der Malsburg K; Hegde RS
    Mol Cell; 2013 Jun; 50(5):637-48. PubMed ID: 23685075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of Ubiquitinated and Non-ubiquitinated Nascent Chains from Stalled Mammalian Ribosomal Complexes by ANKZF1 and Ptrh1.
    Kuroha K; Zinoviev A; Hellen CUT; Pestova TV
    Mol Cell; 2018 Oct; 72(2):286-302.e8. PubMed ID: 30244831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors.
    Shao S; Hegde RS
    Mol Cell; 2014 Sep; 55(6):880-890. PubMed ID: 25132172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex.
    Lyumkis D; Oliveira dos Passos D; Tahara EB; Webb K; Bennett EJ; Vinterbo S; Potter CS; Carragher B; Joazeiro CA
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15981-6. PubMed ID: 25349383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperativity between the Ribosome-Associated Chaperone Ssb/RAC and the Ubiquitin Ligase Ltn1 in Ubiquitination of Nascent Polypeptides.
    Ghosh A; Shcherbik N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32957466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes.
    Verma R; Reichermeier KM; Burroughs AM; Oania RS; Reitsma JM; Aravind L; Deshaies RJ
    Nature; 2018 May; 557(7705):446-451. PubMed ID: 29632312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon.
    von der Malsburg K; Shao S; Hegde RS
    Mol Biol Cell; 2015 Jun; 26(12):2168-80. PubMed ID: 25877867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the yeast listerin (Ltn1) conserved N-terminal domain in binding to stalled 60S ribosomal subunits.
    Doamekpor SK; Lee JW; Hepowit NL; Wu C; Charenton C; Leonard M; Bengtson MH; Rajashankar KR; Sachs MS; Lima CD; Joazeiro CA
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):E4151-60. PubMed ID: 27385828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal collision is not a prerequisite for ZNF598-mediated ribosome ubiquitination and disassembly of ribosomal complexes by ASCC.
    Miścicka A; Bulakhov AG; Kuroha K; Zinoviev A; Hellen CUT; Pestova TV
    Nucleic Acids Res; 2024 May; 52(8):4627-4643. PubMed ID: 38366554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and assembly pathway of the ribosome quality control complex.
    Shao S; Brown A; Santhanam B; Hegde RS
    Mol Cell; 2015 Feb; 57(3):433-44. PubMed ID: 25578875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits.
    Defenouillère Q; Zhang E; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M
    J Biol Chem; 2016 Jun; 291(23):12245-53. PubMed ID: 27129255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes.
    Pisareva VP; Skabkin MA; Hellen CU; Pestova TV; Pisarev AV
    EMBO J; 2011 May; 30(9):1804-17. PubMed ID: 21448132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct types of translation termination generate substrates for ribosome-associated quality control.
    Shcherbik N; Chernova TA; Chernoff YO; Pestov DG
    Nucleic Acids Res; 2016 Aug; 44(14):6840-52. PubMed ID: 27325745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control.
    Joazeiro CAP
    Annu Rev Cell Dev Biol; 2017 Oct; 33():343-368. PubMed ID: 28715909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ribosome-bound quality control complex remains associated to aberrant peptides during their proteasomal targeting and interacts with Tom1 to limit protein aggregation.
    Defenouillère Q; Namane A; Mouaikel J; Jacquier A; Fromont-Racine M
    Mol Biol Cell; 2017 May; 28(9):1165-1176. PubMed ID: 28298488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome-associated quality-control mechanisms from bacteria to humans.
    Filbeck S; Cerullo F; Pfeffer S; Joazeiro CAP
    Mol Cell; 2022 Apr; 82(8):1451-1466. PubMed ID: 35452614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control.
    Lytvynenko I; Paternoga H; Thrun A; Balke A; Müller TA; Chiang CH; Nagler K; Tsaprailis G; Anders S; Bischofs I; Maupin-Furlow JA; Spahn CMT; Joazeiro CAP
    Cell; 2019 Jun; 178(1):76-90.e22. PubMed ID: 31155236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LISTERIN E3 Ubiquitin Ligase and Ribosome-Associated Quality Control (RQC) Mechanism.
    Mishra R; Bansal A; Mishra A
    Mol Neurobiol; 2021 Dec; 58(12):6593-6609. PubMed ID: 34590243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast.
    Matsuda R; Ikeuchi K; Nomura S; Inada T
    Genes Cells; 2014 Jan; 19(1):1-12. PubMed ID: 24261871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products.
    Defenouillère Q; Yao Y; Mouaikel J; Namane A; Galopier A; Decourty L; Doyen A; Malabat C; Saveanu C; Jacquier A; Fromont-Racine M
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5046-51. PubMed ID: 23479637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.