These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
491 related articles for article (PubMed ID: 23685123)
1. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: a new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length. D'Auria L; Deleu M; Dufour S; Mingeot-Leclercq MP; Tyteca D Biochim Biophys Acta; 2013 Sep; 1828(9):2064-73. PubMed ID: 23685123 [TBL] [Abstract][Full Text] [Related]
3. Micrometric segregation of fluorescent membrane lipids: relevance for endogenous lipids and biogenesis in erythrocytes. D'Auria L; Fenaux M; Aleksandrowicz P; Van Der Smissen P; Chantrain C; Vermylen C; Vikkula M; Courtoy PJ; Tyteca D J Lipid Res; 2013 Apr; 54(4):1066-76. PubMed ID: 23322884 [TBL] [Abstract][Full Text] [Related]
4. Segregation of fluorescent membrane lipids into distinct micrometric domains: evidence for phase compartmentation of natural lipids? D'auria L; Van der Smissen P; Bruyneel F; Courtoy PJ; Tyteca D PLoS One; 2011 Feb; 6(2):e17021. PubMed ID: 21386970 [TBL] [Abstract][Full Text] [Related]
5. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462 [TBL] [Abstract][Full Text] [Related]
6. Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Francius G; Dufour S; Deleu M; Paquot M; Mingeot-Leclercq MP; Dufrêne YF Biochim Biophys Acta; 2008 Oct; 1778(10):2058-68. PubMed ID: 18455997 [TBL] [Abstract][Full Text] [Related]
7. The polar nature of 7-ketocholesterol determines its location within membrane domains and the kinetics of membrane microsolubilization by apolipoprotein A-I. Massey JB; Pownall HJ Biochemistry; 2005 Aug; 44(30):10423-33. PubMed ID: 16042420 [TBL] [Abstract][Full Text] [Related]
8. Interaction of cholesterol in ternary lipid mixtures investigated using single-molecule fluorescence. DeWitt BN; Dunn RC Langmuir; 2015 Jan; 31(3):995-1004. PubMed ID: 25531175 [TBL] [Abstract][Full Text] [Related]
9. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Massey JB Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156 [TBL] [Abstract][Full Text] [Related]
11. Use of cyclodextrin for AFM monitoring of model raft formation. Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321 [TBL] [Abstract][Full Text] [Related]
12. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Garner AE; Smith DA; Hooper NM Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480 [TBL] [Abstract][Full Text] [Related]
13. Spatial Relationship and Functional Relevance of Three Lipid Domain Populations at the Erythrocyte Surface. Conrard L; Stommen A; Cloos AS; Steinkühler J; Dimova R; Pollet H; Tyteca D Cell Physiol Biochem; 2018; 51(4):1544-1565. PubMed ID: 30497064 [TBL] [Abstract][Full Text] [Related]
14. Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Taniguchi Y; Ohba T; Miyata H; Ohki K Biochim Biophys Acta; 2006 Feb; 1758(2):145-53. PubMed ID: 16580624 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures. Juhasz J; Davis JH; Sharom FJ Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452 [TBL] [Abstract][Full Text] [Related]
16. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Niu SL; Litman BJ Biophys J; 2002 Dec; 83(6):3408-15. PubMed ID: 12496107 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale packing differences in sphingomyelin and phosphatidylcholine revealed by BODIPY fluorescence in monolayers: physiological implications. Zhai X; Boldyrev IA; Mizuno NK; Momsen MM; Molotkovsky JG; Brockman HL; Brown RE Langmuir; 2014 Mar; 30(11):3154-64. PubMed ID: 24564829 [TBL] [Abstract][Full Text] [Related]
18. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms. Bakht O; Pathak P; London E Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains. Pathak P; London E Biophys J; 2015 Oct; 109(8):1630-8. PubMed ID: 26488654 [TBL] [Abstract][Full Text] [Related]
20. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles. Lin Q; London E Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]