These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23685171)

  • 1. A pure state decomposition approach of the mixed dynamic form factor for mapping atomic orbitals.
    Löffler S; Motsch V; Schattschneider P
    Ultramicroscopy; 2013 Aug; 131():39-45. PubMed ID: 23685171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of matrix diagonalization in modelling inelastic electron scattering.
    Lee Z; Hambach R; Kaiser U; Rose H
    Ultramicroscopy; 2017 Apr; 175():58-66. PubMed ID: 28129597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channeling, localization and the density matrix in inelastic electron scattering.
    Schattschneider P; Jouffrey B
    Ultramicroscopy; 2003 Sep; 96(3-4):453-62. PubMed ID: 12871807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the inelastic scattering of fast electrons.
    Allen LJ; D Alfonso AJ; Findlay SD
    Ultramicroscopy; 2015 Apr; 151():11-22. PubMed ID: 25467859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling imaging based on core-loss spectroscopy in scanning transmission electron microscopy.
    Findlay SD; Oxley MP; Pennycook SJ; Allen LJ
    Ultramicroscopy; 2005 Sep; 104(2):126-40. PubMed ID: 15982522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative diagonalization for orbital optimization in natural orbital functional theory.
    Piris M; Ugalde JM
    J Comput Chem; 2009 Oct; 30(13):2078-86. PubMed ID: 19219918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique.
    Warot-Fonrose B; Houdellier F; Hÿtch MJ; Calmels L; Serin V; Snoeck E
    Ultramicroscopy; 2008 Apr; 108(5):393-8. PubMed ID: 17619085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast noniterative orbital localization for large molecules.
    Aquilante F; Pedersen TB; Sánchez de Merás A; Koch H
    J Chem Phys; 2006 Nov; 125(17):174101. PubMed ID: 17100423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray atomic orbital analysis. I. Quantum-mechanical and crystallographic framework of the method.
    Tanaka K; Makita R; Funahashi S; Komori T; Win Z
    Acta Crystallogr A; 2008 Jul; 64(Pt 4):437-49. PubMed ID: 18560160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical revisit of regioselectivities of diels-alder reactions: orbital-based reevaluation of multicentered reactivity in terms of reactive hybrid orbitals.
    Hirao H; Ohwada T
    J Phys Chem A; 2005 Feb; 109(5):816-24. PubMed ID: 16838952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.
    Aquilante F; Gagliardi L; Pedersen TB; Lindh R
    J Chem Phys; 2009 Apr; 130(15):154107. PubMed ID: 19388736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An incremental correlation approach to excited state energies based on natural transition/localized orbitals.
    Mata RA; Stoll H
    J Chem Phys; 2011 Jan; 134(3):034122. PubMed ID: 21261345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient and near linear scaling pair natural orbital based local coupled cluster method.
    Riplinger C; Neese F
    J Chem Phys; 2013 Jan; 138(3):034106. PubMed ID: 23343267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Si and Ge low-loss spectra to interpret the Ge contrast in EFTEM images of Si(1-x) Ge(x) nanostructures.
    Pantel R; Cheynet MC; Tichelaar FD
    Micron; 2006; 37(7):657-65. PubMed ID: 16529938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets.
    Deringer VL; Tchougréeff AL; Dronskowski R
    J Phys Chem A; 2011 Jun; 115(21):5461-6. PubMed ID: 21548594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme.
    Seifert G
    J Phys Chem A; 2007 Jul; 111(26):5609-13. PubMed ID: 17439198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.
    Neese F; Wennmohs F; Hansen A
    J Chem Phys; 2009 Mar; 130(11):114108. PubMed ID: 19317532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transferability in the natural linear-scaled coupled-cluster effective Hamiltonian approach: Applications to dynamic polarizabilities and dispersion coefficients.
    Hughes TF; Bartlett RJ
    J Chem Phys; 2008 Aug; 129(5):054105. PubMed ID: 18698886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.