BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23685353)

  • 1. High-shear granulation as a manufacturing method for cocrystal granules.
    Rehder S; Christensen NP; Rantanen J; Rades T; Leopold CS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1019-30. PubMed ID: 23685353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Indomethacin-Saccharin Cocrystals during Wet Granulation: Role of Polymeric Excipients.
    Tanaka R; Duggirala NK; Hattori Y; Otsuka M; Suryanarayanan R
    Mol Pharm; 2020 Jan; 17(1):274-283. PubMed ID: 31756100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating theophylline monohydrate formation during high-shear wet granulation through improved understanding of the role of pharmaceutical excipients.
    Wikström H; Carroll WJ; Taylor LS
    Pharm Res; 2008 Apr; 25(4):923-35. PubMed ID: 17896097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics Study of Cocrystal Formation Between Indomethacin and Saccharin Using High-Shear Granulation With In Situ Raman Spectroscopy.
    Tanaka R; Hattori Y; Ashizawa K; Otsuka M
    J Pharm Sci; 2019 Oct; 108(10):3201-3208. PubMed ID: 31279736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of drug physical form during granulation, tabletting and storage.
    Williams AC; Cooper VB; Thomas L; Griffith LJ; Petts CR; Booth SW
    Int J Pharm; 2004 May; 275(1-2):29-39. PubMed ID: 15081136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of starch 1500 as a binder and disintegrant in lamivudine tablets prepared by high shear wet granulation.
    Rahman BM; Ibne-Wahed MI; Khondkar P; Ahmed M; Islam R; Barman RK; Islam MA
    Pak J Pharm Sci; 2008 Oct; 21(4):455-9. PubMed ID: 18930870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching from batch to continuous granulation: A case study of metoprolol succinate ER tablets.
    Kotamarthy L; Feng X; Alayoubi A; Kumar Bolla P; Ramachandran R; Ashraf M; O'Connor T; Zidan A
    Int J Pharm; 2022 Apr; 617():121598. PubMed ID: 35202728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twin screw granulation as a simple and efficient tool for continuous wet granulation.
    Keleb EI; Vermeire A; Vervaet C; Remon JP
    Int J Pharm; 2004 Apr; 273(1-2):183-94. PubMed ID: 15010142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating scale-up rules of a high-shear wet granulation process.
    Tao J; Pandey P; Bindra DS; Gao JZ; Narang AS
    J Pharm Sci; 2015 Jul; 104(7):2323-33. PubMed ID: 26010137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New gentle-wing high-shear granulator: impact of processing variables on granules and tablets characteristics of high-drug loading formulation using design of experiment approach.
    Fayed MH; Abdel-Rahman SI; Alanazi FK; Ahmed MO; Tawfeek HM; Al-Shdefat RI
    Drug Dev Ind Pharm; 2017 Oct; 43(10):1584-1600. PubMed ID: 28480773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing-induced phase transitions of theophylline--implications on the dissolution of theophylline tablets.
    Tantry JS; Tank J; Suryanarayanan R
    J Pharm Sci; 2007 May; 96(5):1434-44. PubMed ID: 17455350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextrose monohydrate as a non-animal sourced alternative diluent in high shear wet granulation tablet formulations.
    Mitra B; Wolfe C; Wu SJ
    Drug Dev Ind Pharm; 2018 May; 44(5):817-828. PubMed ID: 29300107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of quality attributes (mechanical strength, disintegration behavior and drug release) of tablets on the basis of characteristics of granules prepared by high shear wet granulation.
    Khan A
    PLoS One; 2021; 16(12):e0261051. PubMed ID: 34882723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical production of tableting granules in an ultra-small-scale high-shear granulator as a pre-formulation study.
    Ogawa T; Uchino T; Takahashi D; Izumi T; Otsuka M
    Drug Dev Ind Pharm; 2012 Nov; 38(11):1390-3. PubMed ID: 22356186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.
    Asada T; Yoshihara N; Ochiai Y; Kimura SI; Iwao Y; Itai S
    Int J Pharm; 2018 Apr; 541(1-2):246-252. PubMed ID: 29496456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.
    Osei-Yeboah F; Feng Y; Sun CC
    J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of manufacturing method for rapidly disintegrating oral tablets using the crystalline transition of amorphous sucrose.
    Sugimoto M; Narisawa S; Matsubara K; Yoshino H; Nakano M; Handa T
    Int J Pharm; 2006 Aug; 320(1-2):71-8. PubMed ID: 16750604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocrystallization and amorphization induced by drug-excipient interaction improves the physical properties of acyclovir.
    Masuda T; Yoshihashi Y; Yonemochi E; Fujii K; Uekusa H; Terada K
    Int J Pharm; 2012 Jan; 422(1-2):160-9. PubMed ID: 22079714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in Transitioning Cocrystals from Bench to Bedside: Dissociation in Prototype Drug Product Environment.
    Koranne S; Sahoo A; Krzyzaniak JF; Luthra S; Arora KK; Suryanarayanan R
    Mol Pharm; 2018 Aug; 15(8):3297-3307. PubMed ID: 29947519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A large-scale experimental comparison of batch and continuous technologies in pharmaceutical tablet manufacturing using ethenzamide.
    Matsunami K; Nagato T; Hasegawa K; Sugiyama H
    Int J Pharm; 2019 Mar; 559():210-219. PubMed ID: 30682448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.