These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 23685354)

  • 1. Weak antibody-cyclodextrin interactions determined by quartz crystal microbalance and dynamic/static light scattering.
    Härtl E; Dixit N; Besheer A; Kalonia D; Winter G
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):781-9. PubMed ID: 23685354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hydroxypropyl-Beta-cyclodextrin on the stability of dilute and highly concentrated immunoglobulin g formulations.
    Härtl E; Winter G; Besheer A
    J Pharm Sci; 2013 Nov; 102(11):4121-31. PubMed ID: 24105716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-beta-cyclodextrin.
    Serno T; Carpenter JF; Randolph TW; Winter G
    J Pharm Sci; 2010 Mar; 99(3):1193-206. PubMed ID: 19774651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of polysorbate 80 and HPβCD at the air-water interface of IgG solutions.
    Serno T; Härtl E; Besheer A; Miller R; Winter G
    Pharm Res; 2013 Jan; 30(1):117-30. PubMed ID: 22910890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2011 Jun; 412(1-2):20-7. PubMed ID: 21497645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polysorbates versus Hydroxypropyl Beta-Cyclodextrin (HPβCD): Comparative Study on Excipient Stability and Stabilization Benefits on Monoclonal Antibodies.
    Zhang H; Hong S; Tan SSK; Peng T; Goh LYH; Lam KH; Chow KT; Gokhale R
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying Excipient Modulated Physical Stability and Viscosity of Monoclonal Antibody Formulations Using Small-Angle Scattering.
    Xu AY; Castellanos MM; Mattison K; Krueger S; Curtis JE
    Mol Pharm; 2019 Oct; 16(10):4319-4338. PubMed ID: 31487466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing protein-protein-interaction in high-concentration monoclonal antibody systems with the quartz crystal microbalance.
    Hartl J; Peschel A; Johannsmann D; Garidel P
    Phys Chem Chem Phys; 2017 Dec; 19(48):32698-32707. PubMed ID: 29199300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.
    Jachimska B; Świątek S; Loch JI; Lewiński K; Luxbacher T
    Bioelectrochemistry; 2018 Jun; 121():95-104. PubMed ID: 29413868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 125I-radiolabeling, surface plasmon resonance, and quartz crystal microbalance with dissipation: three tools to compare protein adsorption on surfaces of different wettability.
    Luan Y; Li D; Wang Y; Liu X; Brash JL; Chen H
    Langmuir; 2014 Feb; 30(4):1029-35. PubMed ID: 24393063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface interactions of monoclonal antibodies characterized by quartz crystal microbalance with dissipation: impact of hydrophobicity and protein self-interactions.
    Oom A; Poggi M; Wikström J; Sukumar M
    J Pharm Sci; 2012 Feb; 101(2):519-29. PubMed ID: 21938730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force Field Parameterization for the Description of the Interactions between Hydroxypropyl-β-Cyclodextrin and Proteins.
    Arsiccio A; Rospiccio M; Shea JE; Pisano R
    J Phys Chem B; 2021 Jul; 125(27):7397-7405. PubMed ID: 34210121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free, real-time interaction and adsorption analysis 2: quartz crystal microbalance.
    Fee CJ
    Methods Mol Biol; 2013; 996():313-22. PubMed ID: 23504432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cosolute effects on the chemical potential and interactions of an IgG1 monoclonal antibody at high concentrations.
    Scherer TM
    J Phys Chem B; 2013 Feb; 117(8):2254-66. PubMed ID: 23330570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous monitoring of protein adsorption kinetics using a quartz crystal microbalance and field-effect transistor integrated device.
    Goda T; Maeda Y; Miyahara Y
    Anal Chem; 2012 Sep; 84(17):7308-14. PubMed ID: 22861174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody adsorption and orientation on hydrophobic surfaces.
    Wiseman ME; Frank CW
    Langmuir; 2012 Jan; 28(3):1765-74. PubMed ID: 22181558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification.
    Salam F; Uludag Y; Tothill IE
    Talanta; 2013 Oct; 115():761-7. PubMed ID: 24054660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between a novel gemini surfactant and cyclodextrin: NMR and surface tension studies.
    Abrahmsén-Alami S; Alami E; Eastoe J; Cosgrove T
    J Colloid Interface Sci; 2002 Feb; 246(1):191-202. PubMed ID: 16290400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of [D-Trp6, Des-Gly10] LHRH ethylamide and hydroxy propyl beta-cyclodextrin (HPbetaCD): thermodynamics of interaction and protection from degradation by alpha-chymotrypsin.
    Koushik KN; Bandi N; Kompella UB
    Pharm Dev Technol; 2001 Nov; 6(4):595-606. PubMed ID: 11775960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of protein particle formation during ultrafiltration/diafiltration through interfacial protection.
    Callahan DJ; Stanley B; Li Y
    J Pharm Sci; 2014 Mar; 103(3):862-9. PubMed ID: 24449131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.