These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 23685628)
21. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Lister R; Pelizzola M; Kida YS; Hawkins RD; Nery JR; Hon G; Antosiewicz-Bourget J; O'Malley R; Castanon R; Klugman S; Downes M; Yu R; Stewart R; Ren B; Thomson JA; Evans RM; Ecker JR Nature; 2011 Mar; 471(7336):68-73. PubMed ID: 21289626 [TBL] [Abstract][Full Text] [Related]
22. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. Hore TA; von Meyenn F; Ravichandran M; Bachman M; Ficz G; Oxley D; Santos F; Balasubramanian S; Jurkowski TP; Reik W Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12202-12207. PubMed ID: 27729528 [TBL] [Abstract][Full Text] [Related]
23. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Mulholland CB; Traube FR; Ugur E; Parsa E; Eckl EM; Schönung M; Modic M; Bartoschek MD; Stolz P; Ryan J; Carell T; Leonhardt H; Bultmann S Sci Rep; 2020 Jul; 10(1):12066. PubMed ID: 32694513 [TBL] [Abstract][Full Text] [Related]
24. Selective targeting of TET catalytic domain promotes somatic cell reprogramming. Singh AK; Zhao B; Liu X; Wang X; Li H; Qin H; Wu X; Ma Y; Horne D; Yu X Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3621-3626. PubMed ID: 32024762 [TBL] [Abstract][Full Text] [Related]
25. Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Müller T; Gessi M; Waha A; Isselstein LJ; Luxen D; Freihoff D; Freihoff J; Becker A; Simon M; Hammes J; Denkhaus D; zur Mühlen A; Pietsch T; Waha A Am J Pathol; 2012 Aug; 181(2):675-83. PubMed ID: 22688054 [TBL] [Abstract][Full Text] [Related]
26. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dawlaty MM; Breiling A; Le T; Raddatz G; Barrasa MI; Cheng AW; Gao Q; Powell BE; Li Z; Xu M; Faull KF; Lyko F; Jaenisch R Dev Cell; 2013 Feb; 24(3):310-23. PubMed ID: 23352810 [TBL] [Abstract][Full Text] [Related]
27. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Branco MR; Ficz G; Reik W Nat Rev Genet; 2011 Nov; 13(1):7-13. PubMed ID: 22083101 [TBL] [Abstract][Full Text] [Related]
29. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Santiago M; Antunes C; Guedes M; Sousa N; Marques CJ Genomics; 2014 Nov; 104(5):334-40. PubMed ID: 25200796 [TBL] [Abstract][Full Text] [Related]
30. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Amouroux R; Nashun B; Shirane K; Nakagawa S; Hill PW; D'Souza Z; Nakayama M; Matsuda M; Turp A; Ndjetehe E; Encheva V; Kudo NR; Koseki H; Sasaki H; Hajkova P Nat Cell Biol; 2016 Feb; 18(2):225-233. PubMed ID: 26751286 [TBL] [Abstract][Full Text] [Related]
31. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Ito S; D'Alessio AC; Taranova OV; Hong K; Sowers LC; Zhang Y Nature; 2010 Aug; 466(7310):1129-33. PubMed ID: 20639862 [TBL] [Abstract][Full Text] [Related]
32. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
33. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Lan J; Rajan N; Bizet M; Penning A; Singh NK; Guallar D; Calonne E; Li Greci A; Bonvin E; Deplus R; Hsu PJ; Nachtergaele S; Ma C; Song R; Fuentes-Iglesias A; Hassabi B; Putmans P; Mies F; Menschaert G; Wong JJL; Wang J; Fidalgo M; Yuan B; Fuks F Nat Commun; 2020 Oct; 11(1):4956. PubMed ID: 33009383 [TBL] [Abstract][Full Text] [Related]
34. Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells. Wu Y; Guo Z; Liu Y; Tang B; Wang Y; Yang L; Du J; Zhang Y Mol Biol Rep; 2013 Apr; 40(4):2897-906. PubMed ID: 23254757 [TBL] [Abstract][Full Text] [Related]
35. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Sardina JL; Collombet S; Tian TV; Gómez A; Di Stefano B; Berenguer C; Brumbaugh J; Stadhouders R; Segura-Morales C; Gut M; Gut IG; Heath S; Aranda S; Di Croce L; Hochedlinger K; Thieffry D; Graf T Cell Stem Cell; 2018 Nov; 23(5):727-741.e9. PubMed ID: 30220521 [TBL] [Abstract][Full Text] [Related]
36. Loss of 5-hydroxymethylcytosine in cancer: cause or consequence? Ficz G; Gribben JG Genomics; 2014 Nov; 104(5):352-7. PubMed ID: 25179374 [TBL] [Abstract][Full Text] [Related]
37. miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs. Cui Y; Li T; Yang D; Li S; Le W Oncotarget; 2016 Oct; 7(40):64932-64941. PubMed ID: 27449105 [TBL] [Abstract][Full Text] [Related]
38. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL. Poole CJ; Lodh A; Choi JH; van Riggelen J Epigenetics Chromatin; 2019 Jul; 12(1):41. PubMed ID: 31266538 [TBL] [Abstract][Full Text] [Related]
39. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Wossidlo M; Nakamura T; Lepikhov K; Marques CJ; Zakhartchenko V; Boiani M; Arand J; Nakano T; Reik W; Walter J Nat Commun; 2011; 2():241. PubMed ID: 21407207 [TBL] [Abstract][Full Text] [Related]
40. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Hon GC; Song CX; Du T; Jin F; Selvaraj S; Lee AY; Yen CA; Ye Z; Mao SQ; Wang BA; Kuan S; Edsall LE; Zhao BS; Xu GL; He C; Ren B Mol Cell; 2014 Oct; 56(2):286-297. PubMed ID: 25263596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]