BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 23685740)

  • 21. The effect of tuning ankle foot orthoses-footwear combination on the gait parameters of children with cerebral palsy.
    Eddison N; Chockalingam N
    Prosthet Orthot Int; 2013 Apr; 37(2):95-107. PubMed ID: 22833518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of ankle foot orthoses on energy recovery and work during gait in children with cerebral palsy.
    Bennett BC; Russell SD; Abel MF
    Clin Biomech (Bristol, Avon); 2012 Mar; 27(3):287-91. PubMed ID: 22018422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ankle-foot orthoses: effect on energy expenditure of gait in spastic diplegic children.
    Mossberg KA; Linton KA; Friske K
    Arch Phys Med Rehabil; 1990 Jun; 71(7):490-4. PubMed ID: 2350218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy.
    Schwarze M; Block J; Kunz T; Alimusaj M; Heitzmann DWW; Putz C; Dreher T; Wolf SI
    Gait Posture; 2019 Feb; 68():525-530. PubMed ID: 30623847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in muscle activity in children with hemiplegic cerebral palsy while walking with and without ankle-foot orthoses.
    Romkes J; Hell AK; Brunner R
    Gait Posture; 2006 Dec; 24(4):467-74. PubMed ID: 16413188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reach performance and postural adjustments during standing in children with severe spastic diplegia using dynamic ankle-foot orthoses.
    Näslund A; Sundelin G; Hirschfeld H
    J Rehabil Med; 2007 Nov; 39(9):715-23. PubMed ID: 17999010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ankle-foot orthoses: effect on gait in children with cerebral palsy.
    Dursun E; Dursun N; Alican D
    Disabil Rehabil; 2002 May; 24(7):345-7. PubMed ID: 12022783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of rigid and hinged polypropylene ankle-foot-orthoses in the management of cerebral palsy: a case study.
    Middleton EA; Hurley GR; McIlwain JS
    Prosthet Orthot Int; 1988 Dec; 12(3):129-35. PubMed ID: 3217242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ankle-foot orthoses for preambulatory children with spastic diplegia.
    Wilson H; Haideri N; Song K; Telford D
    J Pediatr Orthop; 1997; 17(3):370-6. PubMed ID: 9150028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Managing equinus in a child with cerebral palsy: merits of hinged ankle-foot orthoses.
    Carmick J
    Dev Med Child Neurol; 1995 Nov; 37(11):1006-10. PubMed ID: 8566446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait characteristics following Achilles tendon elongation: the foot rocker perspective.
    Bober T; Dziuba A; Kobel-Buys K; Kulig K
    Acta Bioeng Biomech; 2008; 10(1):37-42. PubMed ID: 18634352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Does footprint and foot progression matter for ankle power generation in spastic hemiplegic cerebral palsy?].
    Riad J; Henley J; Miller F
    Acta Orthop Traumatol Turc; 2009; 43(2):128-34. PubMed ID: 19448353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The clinical impact of orthotic correction of lower limb rotational deformities in children with cerebral palsy: a randomized controlled trial.
    Abd El-Kafy EM
    Clin Rehabil; 2014 Oct; 28(10):1004-14. PubMed ID: 24837141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon Modular Orthosis (Ca.M.O.): An innovative hybrid modular ankle-foot orthosis to tune the variable rehabilitation needs in hemiplegic cerebral palsy.
    Tavernese E; Petrarca M; Rosellini G; Di Stanislao E; Pisano A; Di Rosa G; Castelli E
    NeuroRehabilitation; 2017; 40(3):447-457. PubMed ID: 28222565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A preliminary evaluation of ankle orthoses in the management of children with cerebral palsy.
    Hainsworth F; Harrison MJ; Sheldon TA; Roussounis SH
    Dev Med Child Neurol; 1997 Apr; 39(4):243-7. PubMed ID: 9183263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait.
    Blaya JA; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):24-31. PubMed ID: 15068184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brace evaluation in children with diplegic cerebral palsy with a jump gait pattern.
    Smith PA; Hassani S; Graf A; Flanagan A; Reiners K; Kuo KN; Roh JY; Harris GF
    J Bone Joint Surg Am; 2009 Feb; 91(2):356-65. PubMed ID: 19181980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The efficacy of tone-reducing features in orthotics on the gait of children with spastic diplegic cerebral palsy.
    Crenshaw S; Herzog R; Castagno P; Richards J; Miller F; Michaloski G; Moran E
    J Pediatr Orthop; 2000; 20(2):210-6. PubMed ID: 10739284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of effects of lower extremity orthoses on energy expenditure in patients with cerebral palsy.
    Caliskan Uckun A; Celik C; Ucan H; Ordu Gokkaya NK
    Dev Neurorehabil; 2014 Dec; 17(6):388-92. PubMed ID: 23977942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.